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50th year Commemorative Special Issue of the Transactions of Information Theory notes that

‘...] despite the existence of potential applications, the
conceptual importance of distributed source coding has

not been mirrored in practical data compression.”

Still the case after 25 years.
Particularly, for general sources.

Learning-based compressors (e.g., Ballé et al., 2017) may help.

S. Verdu, “Fifty years of Shannon theory”, IEEE Transactions on Information Theory, 1998.

J. Balle et al., “End-to-end Optimized Image Compression”, International Conference on Learning Representations (ICLR), 2017.
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e /amir et al. (2002): Asymptotically optimal for binary and Gaussian sources.
> Nested linear and lattice codes.

e Pradhan & Ramchandran (2003): Non-asymptotic for Gaussian sources.
> Re-formulate WZ as dual quantizer-channel coding.

> Use cosets to mimic random binning.

e Source Space Coset.(.iode Source Code Ectimation X
Partition Partition f> Recovery .

Encoder Decoder Y
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“Learn” to compress

New paradigm in compression.

e Learned compression is data-driven and easily adaptable for arbitrary empirical
distributions.

e "l earning’ mostly means using stochastic gradient descent.

> No formal guarantees for convergence.
> Not well-suited for optimization with hard constraints.

e Leverage universal function approximation (Leshno et al., 1993; Hornik et al., 1989)
capability of neural networks.

> Find constructive solutions for the W/ setting.
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e Define all models py(u|x), qe(u) and gg(u | ) as discrete distributions with probabilities:

exp

K
zizl eXp a;

e [his keeps the parametric families as general as possible, and does not impose any structure.
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e SGD replaces [E( - ) by averages over batches of samples B.
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e To draw samples u from py(u|x), use Gumbel-max ‘trick’ that is:

, where [y is a sample loss with parameters 0.

.....
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Neural parametrization for Wyner-Ziv

e Optimize learnable parameters with stochastic gradient descent (SGD).

e SGD replaces [E( - ) by averages over batches of samples B.

0 1 oly(x,

For example, —[E[ly(x, y)] = Z o> )
00

(x,y)EB

00 | B|
e To draw samples u from py(u|x), use Gumbel-max ‘trick’ that is:

, where [y is a sample loss with parameters 0.

.....

e Problem: the derivative of arg max is 0 almost everywhere.

e Need continuous relaxation of arg max during training.

* Opt for softmax (difterentiable!).

> Use Gumbel-softmax ‘trick’ by Maddison et al.

E. J. Gumbel, “Statistical theory of extreme values and some practical applications: a series of lectures”, US Department of
Commerce, 1954.
C. Maddison et al.,, “The concrete distribution: a continuous relaxation of discrete random variables”, ICLR, 2017.
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e [o evaluate how close we can get to the R-D bound, we choose:
*lLet X and Y be correlated, zero-mean and stationary Gaussian memoryless sources.
*Let d( - ) be mean-squared error.

e Wyner-Ziv R-D function then is:

1 Gﬁgly 0

e Consider correlation patternsof X =Y+ Nand Y =X+ N .

e [he neural compressor does not make any assumptions on the source distribution.

> The model parameters {0,¢,& C} are learned in a data-driven way.
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Results

Learned compressor recovers binning.

| earned encoder:

u = arg max,pg(v | x)

same tndex

—> binning.

Learned decoder:

identity function

In quadratic-Gaussian W/
setup, the optimal decoder does:

(I=p)-y+p-u,

where ﬁ X 0,% .

X

learned quantization boundaries and X

Recovers optimal
Marginal formulation.

X = Y+ N with ¥ ~ N(0,1) and N ~ N(0,107"). reconstruction
function.
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"]. Whang, A. Acharya, H. Kim, and A. G. Dimakis, “Neural distributed source coding”, https://arxiv.org/abs/2106.02797, 2021.
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lake-home messages

e [o close the gap between theory and practice in distributed source coding,
learned compression is a promising approach.

e In quadratic-Gaussian case, learned compressors recover some elements of
the optimal theoretical solution.

> Binning in the source space and linear decoding functions.
> First-time emerges from learning.

e Data-driven insights about the ‘nature’ of a classical source coding problem
with side information.
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