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Toy example for distributed compression

e Suppose X and Y are equiprobable 3-bit binary words.

o Let correlation pattern be such that dj, ;i (X; ¥) < 1.

e It Y is available at both encoder-decoder, describe X using 2 bits.
e Realize that there are only 4 possibilities for X + Y, {000;001;010; 100}
e What if Y is “only” available at decoder ?

e X can still be described using only 2 bits !!
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loy example (continued)

e Realization:
e Wasteful to spend bits in differentiating X between ‘distant’ codewords.
e Group 38 possible values of X into 4 groups (“binning”):
e B,=1000;111}, B, ={001;110}, B, = {010; 101}, B; = {011; 100}
e Send the index of the bin (or coset).

000 101
e Resolve the uncertainty with Y by checking Hamming distance.




“l...] despite the existence of potential applications,
the conceptual importance of distributed compression
has not been mirrored in practical data compression.”

50th year Commemorative Special Issue of Trans. on Information Theory

Verdu (IEEE Trans. on Information Theory, 1998)



“l...] despite the existence of potential applications,
the conceptual importance of distributed compression
has not been mirrored in practical data compression.”

50th year Commemorative Special Issue of Trans. on Information Theory

Data-driven methods may ﬁega here!

Verdu (IEEE Trans. on Information Theory, 1998)
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Outline

2. New solutions to old problems 1n information theory:

a) distributed data compression: Wyner—Ziv and extensions
b) “compress-and-forward” for the relay channel
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Nonlinear Transtorm Coding (NTC)

6
X y
JE— ® ® uniform
quantizer

NN ®

(rounding)
X A Y NN LEC % arithmetic
R — ® ® W . coding
B signal ” transtorm 1'{
space space
MSE bits/pixel
MS-SSIM

LB, o) =R+ AD

Ballé, Laparra & Simoncelli (ICLR, 2017)



Gradient is zero almost everywhere

y =Lyl
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Gradient is zero almost everywhere

A y =yl
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Proxy rate-distortion loss

Replace rounding with additive uniform noise.

Ballé, Chou, Minnen et al. (IEEE STSP, 2021)
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Proxy rate-distortion loss

Replace rounding with additive uniform noise.

y V inference
y 4’?—> Y training

Ay~uU 1L

Ballé, Chou, Minnen et al. (IEEE STSP, 2021)
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Special case of distributed compression:

rate-distortion with (decoder-only) side information

Also known as Wyner-Ziv setup in information theory.
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Special case of distributed compression:

rate-distortion with (decoder-only) side information

Also known as Wyner-Ziv setup in information theory.

R

3 e.g., video coding

Y" e.g.,:
X=Y+N
Y ~4(0,1)
N ~ 40,1071
Wyner & Ziv (IEEE Trans. on Information Theory, 1976)
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With learned compression, just give y to decoder?

®
) ﬁ

...................... ® ®
signal transform }':{
space space

14



With learned compression, just give y to decoder?

...................... ‘ ‘
signal transform
D N R
space space
y
®

14



Nope! NTC doesn’t work.
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Ozyilkan, Ballé & Erkip (IEEE ]J. Sel. Areas Information Theory, 2024)
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What does NTC learn?
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What does NTC learn?
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0.4
codebook |
o - a
lndlceS: 0.2

-~

C |

I D

.

0.0 e

—-9.03 -7.14 -5.27 -3.43-1.76 —0.01 1.74 3.41

5.25 7.12 9.01

Sullivan (IEEE Trans. on Information Theory, 1996)

X ~ Laplace(0,1)
Y =sgn( X )

NTC assigns unique index

for each interval.

16



What does NTC learn??
ooy —swre T X~ Laplace(0,])
: : : : : : : Y — Sgn( X )

® codebook

codebookOA? T
a bic,

indices: ./ NTC assigns unique index

for each interval.

004i——i—o i " —®7 | : | :1 =9 :
-9.03 -7.14 -5.27 -3.43-1.76 —0.01 1.74 3.41 525 7.12 9.0l

—— analysis transform encoder: R —» Z

2 - synthesis transform
—e— codebook
19 ..e- boundaries

NTC recovers smooth

latent space

nonlinear transforms.

—3.429 —1.763 —0.006 1.738 3.415
source space

Sullivan (IEEE Trans. on Information Theory, 1996)
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How to overcome the smoothness learning bias?

* Motivation: encoder can implement arbitrary maps’

* Let the encoder output indicator (one-hot) functions,
rather than vectors rounded to integers.

* This gives the encoder the same structure as a classification network.

* Encoder be ¢y : R = {a,b,c,d, -}, instead of ¢y : R —= Z as in NTC.

17



Replacing NTC with something less constrained

» Let encoder ¢y(x) output “logits” (a;, a,, a3, *+*).
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Replacing NTC with something less constrained

 Let encoder ey(x) output “logits” (o, o, a3, *++).
not differentiable &

» Choose quantization index as u = a; .

* x = q; can still be a smooth function although x = u may not be!
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Gumbel-Softmax trick

Allows difterentiable sampling from categorical-like distribution.

t =20 t=1/2 t =1 t =2

Rather than sampling an index u, we sample a vector u:
eXp((ak -+ Gk)/t)
— As t — 07, we approach arg max .
2..exp((a; + G)/1) P °

softmax is differentiable!!
Maddison et al. (ICLR, 2017) 19
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Learned compressor recovers “binning’ (grouping)

-------- identity function

X=Y+N
Y ~ H(0,1)
N ~ (0,107
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Learned compressor recovers “binning’ (grouping)

-------- identity function
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Learned compressor recovers “binning’ (grouping)

“Binning” is widely used to prove
bounds in distributed compression,
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“Binning” is widely used to prove
bounds in distributed compression,

with some constructive attempts at
implementation.
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Learned compressor recovers “binning’ (grouping)

“Binning” is widely used to prove
bounds in distributed compression,

with some constructive attempts at
implementation.

For X, Y Gaussian;
the optimal decoder is linear given

the quantization index.
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Empirical results of Gumbel-Softmax
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Empirical results of Gumbel-Softmax
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—o— NTC-based compressor w/ side information
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Training with Gumbel-Softmax objective

» Optimization requires hyperparameter search
(e.g., temperature scheduling).

* The loss function is not an upper bound on true objective
(the rate-distortion).

22



Training with Gumbel-Softmax objective

» Optimization requires hyperparameter search
(e.g., temperature scheduling).
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Training with Gumbel-Softmax objective

» Optimization requires hyperparameter search
(e.g., temperature scheduling).

* The loss function is not an upper bound on true objective
(the rate-distortion).

 Another solution for replacing ¢y : R — Z with ¢y : R — {a,b,c,d, -}
* Encoder tollows classical entropy-coded vector quantizer ( ).

* Encoder is completely unstructured in this case:

— can assign any quantization index to input realization.

22



version of Wyner-Ziv model

u = arg min Ep(y‘x)[— log py (k) +A-d(x, g¢(k, y)) ]
kek —_— -

rate distortion
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u = arg min Ep(y‘x)[— log py (k) +A-d(x, g¢(k, y)) ]
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ECVQ vs. NTC

24



ECVQO vs. NTC

« ECVQ objective is exactly what we
want to optimize and requires

—10 +

distortion [dB] |

no relaxation (e.g., temperature

scheduling). 15|+ ECVQ formulation
—— NTC-based compressor w/ side information

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
rate [bits]

X ~ Laplace(0,1)
Y =sgn( X )

Ozyilkan, Ballé & Erkip (IEEE J. Sel. Areas Information Theory, 2024) 24



vs. NTC

O,,
« ECVQ objective is exactly what we | ;|
. . =
want to optimize and requires -
: 2 -10 |
no relaxation (e.g., temperature 5
Schedullng). _15 | ECVQ formulation T
—— NTC-based compressor w/ side information
. BLIt, the encoder doesn’t scale to 0o 02 04 06 08 1 1.2 14 16 18
rate [bits]
higher dimensions
(as in “traditional” VQ models)! X ~ Laplace(0,1)
Y =sgn( X )

Ozyilkan, Ballé & Erkip (IEEE J. Sel. Areas Information Theory, 2024)
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* NTC-based solutions showed promise for low rate distributed image compression.
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Summary on Neural Distributed Compression

* N TC-based solutions showed promise for low rate distributed image compression.
—> Mital®, Ozyilkan™, Gargani & Giindiiz (IEEE/CVF WACYV, 2023)
—> Mital”, Ozyilkan®, Gargani & Giindiiz (IEEE DCC, 2022)

» But, using state-of-the-art NI1C naively does not get close to the optimum.

o The smoothness [eaming bias prevents it from recovering arbitrary maps

at the encoder.
—> Ozyilkan, Ballé & Erkip (ISIT, 2023 & Neural Compression Workshop @ ICML'23)
—> Ozyilkan, Ballé & Erkip (IEEE J. Sel. Areas Information Theory, 2024)
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Summary on Neural Distributed Compression

* N TC-based solutions showed promise for low rate distributed image compression.
—> Mital®, Ozyilkan®, Gargani & Giindiiz (IEEE/CVF WACY, 2023)
—> Mital”, Ozyilkan®, Gargani & Giindiiz (IEEE DCC, 2022)

» But, using state-of-the-art NI1C naively does not get close to the optimum.

o The smoothness [eaming bias prevents it from recovering arbitrary maps

at the encoder.
—> Ogzyilkan, Ballé & Erkip (ISIT, 2023 & Neural Compression Workshop @ ICML'23)
—> Ozyilkan, Ballé & Erkip (IEEE J. Sel. Areas Information Theory, 2024)

« We need less structured methods to recover high-frequency mappings
(e.g., "binning”).
—> Ozyilkan, Ballé, Bhadane, Wagner & Erkip (Compression Workshop @ NeurlPS, 2024)

J> J>

—> Ozyilkan®, Sriramu™, Wagner, Erkip & Ballé (manuscript in submission)
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Extensions and related projects

A. Robust distributed compression (Heegard—Berger)
Tasci, Ozyilkan, Ulger, Erkip (IEEE ISIT-W, 2024)

B. Distributed Deep Joint Source-Channel Coding
Yilmaz, Ozyilkan, Gunduz, Erkip (IEEE ICMLCN, 2024)
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C. Developing scalable, beyond one-shot,
learning-based ECVQ-like methods (ongoing)

D. “Dual” problem of Wyner-Ziv in channel coding: dirty paper coding
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Extensions and related projects
A. Robust distributed compression (Heegard—Berger)

B. Distributed Deep Joint Source-Channel Coding
C. Developing scalable, beyond one-shot,

learning-based ECVQ-like methods (ongoing)

D. “Dual” problem of Wyner-Ziv in channel coding: dirty paper coding

E. Neural compress-and-forward for the relay — Part I1.B
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C. Developing scalable learning-based ECVQ
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C. Developing scalable learning-based ECVQ

X=Y+N
Y ~ H(0,1)
N ~ 40,107
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* SoftBinary model:
125- ey: R — {O,l}d, where
encoder is now

% stochastic.

'ZCC: oY ISIT 2023 marg.

8 | = rsamane

ISIT 2023 cond.
------- point-to-point (asympt.)
-25.014 =-=-=-- Wyner-Ziv + sphere loss
—— Wyner-Ziv (asympt.)
--©-- SoftBinary during training

I PN SoftBinary w/ Polar Arithmetic Coding
NTC w/ dithering
—30.0 - NTC w/ quantization N

0 1 2
rate [bits]

X=Y+N
Y ~ H(0,1)
N ~ 40,107

Manuscript in submission. 27



C.

N
| N

~10.0 { &E

—12.5 A

—15.0 -

distortion [dB]

—25.0 A

—27.5 1

—30.0 -

—17.5 A

—20.0 A

—22.5 -

¢

Developing scalable learning-based ECVQ

ISIT 2023 marg.

—»— |SAIT 2024

ISIT 2023 cond.
point-to-point (asympt.)

- Wyner-Ziv + sphere loss

Wyner-Ziv (asympt.)

- SoftBinary during training
SoftBinary w/ Polar Arithmetic Coding

NTC w/ dithering
NTC w/ quantization

1

rate [bits]

Manuscript in submission.

X=Y+N
Y ~ H(0,1)
N ~ 40,107

» SoftBinary model:

eg: R— {0,114, where
encoder is now
stochastic.

 Assumes a "channel
simulation” instead of
(traditional) entropy
coding:
R = E,[Dk; (@enc Il Pprior)]
instead of

R = _x,q[_ lOg pprior] ‘
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C. Developing scalable learning-based ECVQ

X ~ H4(0,1.0)

Manuscript in submission.

eg: R— {0,114, where
encoder is now
stochastic.

 Assumes a "channel
simulation” instead of
(traditional) entropy
coding:
R = _x[DKL(qenc H pprior)]
instead of

R = _x,q[_lngprior]'
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C.

Developing scalable learning-based ECVQ

N S
’\\\ \\\ \\
N X
SN 3
6 X
_6 N
.§'\\ \\\
N N
\\ \\\\
N N
7 - BN N
- o W\
RN
N X\
N
—8 - \\\ A\
NN N
— SN
o 2 S
© Q\
—_— —9 S .0..\\
W N
S
S o] T point-to-point (asympt.)
% ---- point-to-point + sphere loss
. . . S SN
--©-- SoftBinary during training NN
~117 —e— SoftBinary w/ Polar Arithmetic Coding NN
NN\
NTC w/ dithering " \
_15 4 NTC w/ quantization RN
TN
TCQ w/ 256 states RN
. RSN
—o— Lloyd-Max Quantizer RN,
~13 - : .
-4- ECLQ w/ lattice E8 (Lei et al., 2025) ":}\
—=— ECLQ w/ lattice L24 (Lei et al., 2025) e
_14 I 1 1 1 1 1 i
0.50 0.75 1.00 1.25 1.50 2.00 2.25
rate [bits]

X ~

A(0,1.0)

Manuscript in submission.

2.50

» SoftBinary model:

ep: R — {0,119 where
encoder is now
stochastic.

 Assumes a "channel
simulation” instead of
(traditional) entropy
coding:
R = _x[DKL(qenc H pprior)]
instead of

R = _x,q[_lngprior]'
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D. “Dual” problem of Wyner-Ziv:

Dirty Paper Coding

S N

A x O
Y

E[|| X% < Px

The encoder maps V and known interference

S to an input X, subject to an
average power constraint.

Ozyilkan, Ulger & Erkip (IEEE ITW, 2025)

channel output (quadrature)
channel output (quadrature)

-10 =5 0) 5 10
channel output (in-phase)

—-10 =5 0 5 10
channel output (in-phase)

(a) wi/sinusoidal activations, scoring (b) w/leaky ReLLU activations, scoring
SNR : 7.03 dB, SER : -1.10 dB. SNR : 8.83 dB, SER : -1.11 dB.
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Part |1.B

Neural Compress-and-Forward
for the Relay Channel



Introduction

* Relay channel: fundamental building block of “cooperative communications’”.

* Applications: relay to improve throughput/coverage, e.g., RIS, drones.

Gholami et. al. “Joint Mobility-Aware UAV Placement and Routing in Multi-Hop UAV Relaying Systems”
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Gholami et. al. “Joint Mobility-Aware UAV Placement and Routing in Multi-Hop UAV Relaying Systems”

 Capacity for the general relay channel is unknown, but

several relaying strategies have been proposed.
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Introduction

* Relay channel: fundamental building block of “cooperative communications’”.

* Applications: relay to improve throughput/coverage, e.g., RIS, drones.

<3 Control/management link

Gholami et. al. “Joint Mobility-Aware UAV Placement and Routing in Multi-Hop UAV Relaying Systems”

 Capacity for the general relay channel is unknown, but

several relaying strategies have been proposed.
* Amplity-and-forward, decode-and-forward....

* Compress-and-forward (CF):
the relay sends a quantized version of its signal.
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Motivation for Distributed Compression

» Relay and destination signals are correlated:
Distributed compression techniques, like Wyner-Ziv, can be useful!
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» Relay and destination signals are correlated:
Distributed compression techniques, like Wyner-Ziv, can be useful!

e ...but practical relaying schemes have not been fully developed.
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Motivation for Distributed Compression

» Relay and destination signals are correlated:
Distributed compression techniques, like Wyner-Ziv, can be useful!

o ...but practical relaying schemes have not been tully developed.

* We model relays as learned distributed compressors

—learned compress-and-forward strategy.
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Primitive Relay Channel (PRC) — out-of-band relay

Relay
Relay J N
: Enc. :
Source ’ R Destination
bits Yr est. bits
v v $
" —¥| Mod > p(yp, Yr|X) » Demod > '
Enc. Decod

-------------------------------------------------------------------

* Relay’'s POV: Simplest compression setup w/ channel coding.

* Compress Y, to help destination decode W via orthogonal noiseless link.
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Relay
Relay J N
: Enc. :
Source ’ R Destination
bits YR est. bits
v v $
" ——»{ Mod » p(vp, Yr|X) » Demod > '
Enc. Decod

-------------------------------------------------------------------

* Relay’'s POV: Simplest compression setup w/ channel coding.

* Compress Y, to help destination decode W via orthogonal noiseless link.

* Compress-and-forward (CF) is optimal for oblivious relaying in PRC.

Simeone, Erkip & Shamai (IEEE Trans. On Information Theory, 2011)

33



Primitive Relay Channel (PRC) — out-of-band relay

Relay
Relay J N
: Enc. :
Source ’ R Destination
bits YR est. bits
v v $
" ——»{ Mod » p(vp, Yr|X) » Demod > '
Enc. Decod

-------------------------------------------------------------------

* Relay’'s POV: Simplest compression setup w/ channel coding.

* Compress Y, to help destination decode W via orthogonal noiseless link.
* Compress-and-forward (CF) is optimal for oblivious relaying in PRC.
e Goal: maximize communication rate I(X; Y, U) subject to rate constraint R

» [ask-aware/semantic compression
Simeone, Erkip & Shamai (IEEE Trans. On Information Theory, 2011)
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Simulation Scenario

W —» Modulator

e Source: equally likely symbols, power constraint P =

Relay
A
v A G
co( Yr)
\ 4
YD
p(¥p, yr|x) — Demodulator

ps(wlyp, es(yr))

>

 Real channel: BPSK, 4-PAM, 8-PAM

e Complex channel: QAM, 16-QAM

=[]1X11%)

arg max
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Simulation Scenario

W —» Modulator F—»

Relay
A
v A G
co( Yr)
\ 4
YD
p(¥p, yr|x) — Demodulator

e Source: equally likely symbols, power constraint P =

ps(wlyp, es(yr))

>

 Real channel: BPSK, 4-PAM, 8-PAM

e Complex channel: QAM, 16-QAM

=[]1X11%)

« Channel: Y, = X+ Ny and Yp = X + N, with N L Ny

e (Np, Np) (complex) Gaussian noise with variance (012), 01%).

+ SNR: y, = Plo}, , yp = Ploj .

arg max




Mutual Information for Learned CF at y, =y, = 3 dB
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Mutual Information for Learned CF at y, =y, = 3 dB

1.20

=
—t
O

perfect relay| bounds
1.00 :

0.90

Ccr from [Simeone at al, 2011]
8-PAM neural relay marg.

Mutual Info. [bits/ch. use]

0.80

4-PAM neural relay marg.
—3— BPSK neural relay marg.

0 1 2 3 4
Relay rate R [bits/ch. use]

0.70

YR

1
CF achievable rate [Simeone et al, 2011]: Cop = 5104‘%2 I'+7p+

1+ 1+YD+7/R

2% = D(rp+ D
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1.20
'g' 110 e s NN NN NN NN NN NN NN NN ENN RN EEEEEEEE
=
5 perfect relay bounds
w 1.00 -
s
S
= 090
T:," Ccr from [Simeone at al, 2011]
= 8-PAM neural relay marg.
—@— 4-PAM neural relay marg.
\ —3— BPSK neural relay marg.

1 2 3 4
Relay rate R [bits/ch. use]

YR

1
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Mutual Information for Learned CF at y, =y, = 3 dB

1.20
‘o 1.10
-
S bounds
w 1.00|
s
O
<= 0.90
E Ccr from [Simeone at al, 2011}
2:, 0.80 | ——ae— 8-PAM neural relay marg.
—@— 4-PAM neural relay marg.
0.70 \ —Jl— BPSK neural relay marg.

0 1 2 3 4
Relay rate R [bits/ch. use]

YR

1
CF achievable rate [Simeone et al, 2011]: Cop = 51082 I'+7p+

1+ 1+yD+yR

22K = D(yp + 1)
Ozyilkan®, Carpi”, Garg & Erkip (IEEE SPAWC, 2024)
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Symbol Error Rate for 16-QAM at y, =y, =7 dB

- = = = without relay perfect relay
—4&— neural relay p2p (joint |I-Q) neural relay p2p (split I-Q)
neural relay marg. (joint |-Q) neural relay marg. (split I-Q)
neural relay cond. (joint I-Q) neural relay cond. (split I-Q)
| { [

R A St S R EEEE CRRRI REEE EEERLEEEE
040\ R—0 %
0.35 .

v
5
0.30 |- .
0.25 .
R — o
020 l l l l l l l l l
0 1 2 3 4 5 6 7 8 9 10

Relay Rate R [bits/ch. use]



Symbol Error Rate for 16-QAM at y, =y, =7 dB

- = = = without relay

perfect relay

—&@— neural relay p2p (joint I-Q)  ===4-=- neural relay p2p (split I-Q)
neural relay marg. (joint I-Q) neural relay marg. (split I-Q)
neural relay cond. (joint I-Q) neural relay cond. (split I-Q)
| [ [ [ [ [ [ [ [ [
T N
0.40 | . R -0 )
N
035 N e .
e ....h.
L )
030 B ’0" ]
025 B ....'0 n
R — o ik 2 4
020 \ \ \ \ \ \ \ \ \
0 1 2 3 4 5 6 7 8 9 10

Relay Rate R [bits/ch. use]

Ozyilkan®, Carpi”, Garg & Erkip (IEEE J. Sel. Areas in Communications, 2025)



Quantization & Decisions for 4-PAM, vy, =y, =10dB, R = 1

Yr

» Relay

Demodulator
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Quantization & Decisions for 4-PAM, vy, =y, =10dB, R = 1

Yr

» Relay

Demodulator
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Quantization & Decisions for 4-PAM, vy, =y, =10dB, R = 1

Yr

Yp

GQ(YR)

>

» Relay

G

A 4

Demodulator
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Quantization & Decisions for 4-PAM, vy, =y, =10dB, R = 1

Yr

Yp

GQ(YR)

>

» Relay

G

A 4

Demodulator

v

arg max = A/
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Quantization & Decisions for QAM, vy, =y, =7 dB, R~ 1

Destination's Demodulator

Yr
> Relay Relay's Compressor
2 | I |
\R
GQ(YR) v
YD

» Demodulator

Ozyilkan®, Carpi”, Garg & Erkip (IEEE J. Sel. Areas in Communications, 2025)



Quantization & Decisions for QAM, vy, =y, =7 dB, R~ 1

Destigation’s Demodulator

Yr

» Relay

G

eg( Yr) = blue v
Yp

Relay's Compressor

» Demodulator

\ 4

arg max (—p W

—2 -1 0 1 2

Ozyilkan®, Carpi”, Garg & Erkip (IEEE J. Sel. Areas in Communications, 2025)



Quantization & Decisions for QAM, vy, =y, =7 dB, R~ 1

Destination's Demodulator
Yr

» Relay

G

Yr) = red
€y ( R) re ¥
Yp

2

Relay’'s Compressor

» Demodulator

\ 4

arg max (—p W

—2 -1 0 1 2

Ozyilkan®, Carpi”, Garg & Erkip (IEEE J. Sel. Areas in Communications, 2025)



Quantization & Decisions for QAM, vy, =y, =7 dB, R~ 1

Destigation’s Demodulator

Yr
> Relay Relay’'s Compressor |
2 I T T
G X
&7
Y
eo( YR) v
Yp |
» Demodulator
_2—2 1 é) 1 2

\ 4

arg max (—p W

—2 -1 0 1 2

Ozyilkan®, Carpi”, Garg & Erkip (IEEE J. Sel. Areas in Communications, 2025)



Summary on Neural Compress-and-Forward (CF)

* First proof-of-concept towards practical neural CF relaying scheme.

* Distributed compression helps in exploiting correlation at the destination.
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Summary on Neural Compress-and-Forward (CF)

* First proof-of-concept towards practical neural CF relaying scheme.

* Distributed compression helps in exploiting correlation at the destination.

* Ongoing project:

» Extending neural CF to diamond relay channel
(t.e., w/ two relays connected to the destination via two separate links)

39



Neural CF for the Diamond Relay Channel

Destination
Source —_
bits : Ch. —> est. bits
l | Relay 1 | Decod
Ch : ' Relay IU1 I
Enc. |, 37 Enc. 11 : p(w|u1, uz)
lw v —< 7T TT RN
Mod. —| P(Yr,, YR, | T) | Demod
___________ \ Ro —m s ==
3& Relay |
Enc. 2 ['"2
Relay 2
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Neural CF for the Diamond Relay Channel

Destination

Source
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Neural CF for the Diamond Relay Channel

Destination
Source —_
'_ — e e — I I
| bits | | Ch. — est. bits |
! l . Relay 1 | Decod |
e e e - - - ! A I
| : : 1
[ Ch. |, | Relay |, : :
: Enc. |, Yy |l Enc. 1] : plwlus, uz) :
|
: J«W :X R R1 N\ :
| Mod. =1 p(Yr,, Yr, | ©) | Demod |
_____ ! === Ro — T
Yr, N Relay 'U
| Enc. 2 | g
Relay 2
\ \
1.4} e e e e e A e e A e e e e
e 1.2 - (Cut-set bound
5 | ==== Converse by Wu et al. [12]
f§ """ - « = Achievability by Katz et al. [9]
= 0.8 4 8-PAM
—= 4-PAM
0.6 —e— BPSK
1 2 3 4 5) §

Aygun,

Ozyilkan & Erkip
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(IEEE Asilomar, 2025)
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Summary on Neural Compress-and-Forward

* Learning-based distributed compressors are usetul for task-aware/semantic
communication problems while being interpretable!
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» Operating close to the capacity in primitive relay channel:

—>
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v Patent application in preparation.
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Summary on Neural Compress-and-Forward

* Learning-based distributed compressors are usetul for task-aware/semantic
communication problems while being interpretable!

» Operating close to the capacity in primitive relay channel:

—>

—>

v Patent application in preparation.

» Observations generalize to multi-relay setups as well:

—

* Revised objective: Distortion < Classification.

« MPEG activity, “Video Coding for Machines”

—
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If you found this talk interesting ...

Publications: https://ezgi.space

Reach out to me at ezgi.ozyilkan@nyu.edu!
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If you found this talk interesting ...

Publications: https://ezgi.space

Reach out to me at ezgi.ozyilkan@nyu.edu!

Moving forward, will be working on:
perceptual optimization
+ compression + 3D vision

NYU

1

A

Apple, ML + Video Research
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Thank you! Q&A?

Neural Distributed Data Compression and Communication
Ezgt Ozyilkan

g
ety
s

https://ezgi.space

,Pr.

ezgi.ozyilkan@nyu.edu
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