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• Suppose  and  are equiprobable 3-bit binary words.X Y

• Let correlation pattern be such that .dhamming(X, Y) ≤ 1

• If  is available at both encoder-decoder, describe  using 2 bits.Y X

• Realize that there are only 4 possibilities for , X + Y {000; 001; 010; 100}

• What if  is “only” available at decoder ?Y

•  can still be described using only 2 bits !!X
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Toy example (continued)
• Realization:

• Wasteful to spend bits in differentiating  between ‘distant’ codewords.X

• Group 8 possible values of  into 4 groups (“binning”): X

• , , , B0 = {000; 111} B1 = {001; 110} B2 = {010; 101} B3 = {011; 100}

• Send the index of the bin (or coset).

• Resolve the uncertainty with  by checking Hamming distance.Y
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“[…] despite the existence of potential applications, 
the conceptual importance of distributed compression 
has not been mirrored in practical data compression.”
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Data-driven methods may help here!

Verdú (IEEE Trans. on Information Theory, 1998)
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Outline
1. Review:  

“Learning” data compression via Nonlinear Transform Coding

2. New solutions to old problems in information theory:  
a) distributed data compression: Wyner–Ziv and extensions 
b) “compress-and-forward” for the relay channel
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Review:  
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Proxy rate-distortion loss

Replace rounding with additive uniform noise.

11Ballé, Chou, Minnen et al. (IEEE STSP, 2021)
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Special case of distributed compression:  

EncoderXn Decoder (X̂n, D)
RX

Yn

13Wyner & Ziv (IEEE Trans. on Information Theory, 1976)

e.g.,:

Also known as Wyner-Ziv setup in information theory.

X = Y + N
Y ∼ 𝒩(0,1)
N ∼ 𝒩(0,10−1)

rate-distortion with (decoder-only) side information

e.g., video coding
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2

7

EncoderX Decoder X̂, Distortion (D)

Y

Rate (R)

Fig. 1: One-shot lossy compression with decoder-only side information.
A version of this compression setup that assumes an asymptotically large
blocklength is known as the Wyner–Ziv problem [13] in information theory
literature.

of handling complex correlations between information sources.
We posit that learning-based methods could be helpful in this
regard, given their quick adaptability to arbitrary data sources
and to new modalities of multimedia.

In this document, I summarize our recent results on DNN-
aided DSC, with a specific focus on a special and simpler
distributed lossy compression case where the side information
is available only at the decoder side, also known as the
Wyner–Ziv problem [13] in information theory literature. In
particular, we leverage the universal function approximation
capability of ANNs [12], [14] and machine learning techniques
to find constructive solutions for the Wyner–Ziv problem in
the non-asymptotic blocklength, particularly one-shot, regime
(see Fig. 1). Although the popular class of neural methods
based on stochastically-trained ANN-based compressors [9]
seems to be a good candidate for the source coding with side
information setup we consider, as we demonstrated in our
journal paper [15], it fails to recover many-to-one mappings
exploiting the side information and as a consequence, is unable
to learn any proper binning (grouping) scheme. To understand
the efficacy of learning-based techniques and the conditions
under which they perform competitively, I also discuss setups
involving abstract sources in addition to practice-oriented ones
that involve images.

II. POPULAR ANN-BASED COMPRESSOR FAILS TO
EXPLOIT SIDE INFORMATION

Most popular previous work on end-to-end learned lossy
compression literature can be collected under the banner of
nonlinear transform coding (NTC) [9]. NTC greatly simplifies
the joint optimization of rate and distortion by mapping the
source into a latent space using learnable nonlinear decor-
relating transforms, and then quantizing and coding each of
the dimensions in the latent space. NTC-based compression
schemes can easily adapt to any arbitrary source distributions,
by replacing the training data, as well as to any differentiable
distortion measures, through end-to-end stochastic optimiza-
tion methods. Recently, NTC-based models have superseded
the best linear transform codecs for images (such as JPEG
[6]), under both traditional and perceptual quality metrics [8].

In the general case of point-to-point compression (no side
information) setup, the neural compression models based on
this data-driven NTC framework optimize a rate–distortion
objective of the following form:

→ log2 qω(↑(fε(x)↓) + ω · d(x, gϑ(↑(fε(x)↓)) (1)

Here, d(·, ·) is a distortion measure that quantifies the dis-
crepancy between inputs and reconstructions; fε and gϑ are
learned encoder (analysis), and decoder (synthesis) functions,
with parameters ω and ε, respectively. Also, ↑·↓ denotes
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Fig. 2: Rate–distortion performances (R-D) obtained with Nonlinear Trans-
form Coding (NTC) [9], which is adapted to incorporate the available side
information, that uses a variant of Eq. (1) as the objective function. We
consider a simple one-shot source coding with side information setup: let
X ↑ Laplace(0; 1) and Y = sgn(X), i.e., the sign function of the input
realization, and let the distortion metric d(·, ·) be mean-squared error. Unlike
the class of state-of-the-art methods, termed NTC, our proposed formulation
in [15] recovers the theoretically optimum R-D function with side information.

uniform scalar quantization (rounding to integers), and qω
corresponds to the learned probability distribution model, with
parameters ϑ, over the quantized latents.

One can easily adapt the objective function in Eq. (1) in
order to fuse the side information by replacing the decoding
function with gϑ(↑(fε(x)↓),y), which now instead receives a
concatenated vector of both inputs. A similar line of reasoning
was followed in my previous neural image compression works
in [16], [17], where we used an NTC-based scheme to exploit
the decoder-only side information in the form of a correlated
image.

While the NTC-based compressors seem to be a good candi-
date for the Wyner–Ziv problem, our analysis in [15] revealed
that surprisingly, they fail to exploit the side information most
efficiently (see Fig. 5). We argue that this popular class of
neural compressors are unable to recover any flexible and
efficient binning schemes even considering a simple test case,
where side information is the sign function of input realization.
We speculate this might be due to the NTC-based compressor’s
spectral bias, which renders them biased towards learning
smooth functions instead [18].

III. LEARNED DISTRIBUTED COMPRESSION WITH
ABSTRACT SOURCES

As an alternative to the NTC-based compressors, our work
in [1], [2], [15] proposes a more generic learning-based
algorithm, which represents the first unstructured entropy-
constrained vector quantizer that makes use of side informa-
tion. We demonstrate that such a learned compressor can re-
discover some principles of the optimum theoretical solution
for the Wyner–Ziv problem, such as binning in the source
space as well as optimal combination of the quantization index
and side information at the decoder, for various exemplary
sources. This provides empirical evidence that the ANN-based
methods can learn constructive solutions very similar to some
of the handcrafted compressors proposed for the Wyner–Ziv
problem, such as the well-known information theoretic work
named DISCUS [20], without requiring a priori knowledge of
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NTC assigns unique index  
for each interval.

NTC recovers smooth  
nonlinear transforms.

a b c d e f g h i j k

encoder: ℝ ↦ ℤ
decoder: ℤ ↦ ℝ

codebook 
indices:

X ∼ Laplace(0,1)
Y = sgn( X )

Sullivan (IEEE Trans. on Information Theory, 1996)
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How to overcome the smoothness learning bias?

• Motivation: encoder can implement arbitrary maps? 
• Let the encoder output indicator (one-hot) functions,   

rather than vectors rounded to integers.
• This gives the encoder the same structure as a classification network.
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Gumbel-Softmax trick
Allows differentiable sampling from categorical-like distribution.

19

softmax is differentiable!!
Maddison et al. (ICLR, 2017)

Rather than sampling an index u, we sample a vector u:

uk =
exp((αk + Gk)/t)

∑i expi((αi + Gi)/t) As , we approach  .t → 0+ arg max
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Fig. 4: Rate–distortion performances (R-D) obtained with Nonlinear Transform Coding (NTC) [9], which is adapted to incorporate the available side information,
that uses a variant of Eq. (1) as the objective function. We consider a simple one-shot source coding with side information setup: let X ↑ Laplace(0; 1) and
Y = sgn(X), i.e., the sign function of the input realization, and let the distortion metric d(·, ·) be mean-squared error. Unlike the class of state-of-the-art
methods, termed NTC, our proposed formulation in [15] recovers the theoretically optimum R-D function with side information.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

→15

→10

→5

0

rate [bits]

di
st

or
tio

n
[d

B
]
→

NTC-based compressor w/ side information
optimal scalar quantizer for Laplace(0; 1)
asymptotic R-D Laplace(0; 1)

optimal scalar quantizer for Exponential(1)
optimal scalar quantizer for Laplace(0; 1) w/ side information

Fig. 5: Rate–distortion performances (R-D) obtained with Nonlinear Transform Coding (NTC) [9], which is adapted to incorporate the available side information,
that uses a variant of Eq. (1) as the objective function. We consider a simple one-shot source coding with side information setup: let X ↑ Laplace(0; 1) and
Y = sgn(X), i.e., the sign function of the input realization, and let the distortion metric d(·, ·) be mean-squared error. Unlike the class of state-of-the-art
methods, termed NTC, our proposed formulation in [15] recovers the theoretically optimum R-D function with side information.
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The inability to 
effectively perform 
“binning” (grouping) 
hurts the performance 
of NTC.
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• Optimization requires hyperparameter search  
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• The loss function is not an upper bound on true objective  
(the rate-distortion).
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Training with Gumbel–Softmax objective

• Optimization requires hyperparameter search  
(e.g., temperature scheduling).

• The loss function is not an upper bound on true objective  
(the rate-distortion).

• Another solution for replacing  with : eθ : ℝ ↦ ℤ eθ : ℝ ↦ {a, b, c, d, ⋯}

• Encoder follows classical entropy-coded vector quantizer (ECVQ).

• Encoder is completely unstructured in this case: 
 can assign any quantization index to input realization.→

22Ozyilkan, Ballé & Erkip (ISIT, 2023 & Neural Compression Workshop @ ICML’23 [oral])
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ECVQ vs. NTC

• ECVQ objective is exactly what we 
want to optimize and requires  
no relaxation (e.g., temperature 
scheduling).

24Ozyilkan, Ballé & Erkip (IEEE J. Sel. Areas Information Theory, 2024)
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ECVQ vs. NTC

• ECVQ objective is exactly what we 
want to optimize and requires  
no relaxation (e.g., temperature 
scheduling).

• But, the encoder doesn’t scale to 
higher dimensions  
(as in “traditional” VQ models)!
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D. “Dual” problem of Wyner-Ziv:  
Dirty Paper Coding

29

Learning to Write on Dirty Paper
Anonymous Authors

Abstract—Dirty paper coding (DPC) is a classical problem
in information theory that considers communication in the
presence of channel state known only at the transmitter. While
the theoretical impact of DPC has been substantial, practical
realizations of DPC, such as Tomlinson–Harashima precoding
(THP) or lattice-based schemes, often rely on specific modeling
assumptions about the input, state and channel. In this work, we
explore whether modern learning-based approaches can offer a
complementary path forward by revisiting the DPC problem. We
propose a data-driven solution in which both the encoder and
decoder are parameterized by neural networks. Our proposed
model operates without prior knowledge of the state (also
referred to as “interference”), channel or input statistics, and
recovers nonlinear mappings that yield effective interference
pre-cancellation. To the best of our knowledge, this is the
first interpretable proof-of-concept demonstrating that learning-
based DPC schemes can recover characteristic features of well-
established solutions, such as THP and lattice-based precoding,
and outperform them in several regimes.

I. INTRODUCTION

The problem of communicating over channels with known
state at the transmitter is a well-studied setup in information
theory [1]. Costa’s seminal work [2], entitled “Writing on
Dirty Paper”, showed that, for the Gaussian channel when
the state, or the interference, is also Gaussian and is known
noncausally at the transmitter but not at the receiver (see
Fig. 1), it is possible to pre-cancel its effect entirely and
achieve the same capacity as if there were no interference
present. The “dirty paper” analogy comes from the idea
that, much like writing a message on a sheet that already
has dirt marks, the transmitter can incorporate knowledge of
the interference (the “dirt”) into the signal it sends, rather
than attempting to erase or avoid it. While Costa’s result
is theoretically elegant, practical realizations still remain an
active area of research, and significant effort has been devoted
to developing implementable schemes that approach the per-
formance promised Costa’s theoretical result.

Building on this foundational insight, dirty paper coding

(DPC) has been a key nonlinear technique in multi-user
communication systems. In particular, it plays a central role in
the design of broadcast strategies for multiple-input multiple-
output (MIMO) downlink channels [3]–[6]. In these settings,
from the perspective of each user, signals intended for other
users appear as interference. However, since the transmitter
has noncausal knowledge of transmitted signals for all users,
it can apply DPC to pre-cancel this interference. This concept
has inspired a broad line of research focused on translating
DPC’s theoretical gains into practical multi-user systems [7]–
[13], where DPC-based designs have been shown to signifi-
cantly outperform their linear counterparts.

In the high SNR regime, DPC can be approximated by

V Encoder X +

S

+

N

Decoder V̂

E[→X→2] ↑ PX

Y

Fig. 1: The dirty paper coding problem. The transmitter maps the
message V and known interference S to an input X , subject to an
average power constraint. The receiver observes the channel output
corrupted by additive noise N .

Tomlinson–Harashima precoding (THP) [14]–[16], a nonlin-
ear precoding strategy originally introduced for intersymbol
interference channels. This method provides a practical means
of approximating Costa’s scheme and has been adopted in
multi-user communication systems [17]–[20] due to its rel-
atively low computational complexity. Although it does not
achieve the full capacity promised by theory [21]–[23], it
leverages the transmitter’s knowledge of the interference and
outperforms naïve strategies that treat the interference as
noise.

Drawing on recent advances [24]–[27] in learning-based
approaches to lossy compression with decoder-only side in-
formation (i.e., the Wyner–Ziv problem [28]), which is known
to be dual of channel coding with encoder-only side informa-
tion [29]–[31] [32, Chapter 6], we formulate and demonstrate
a data-driven perspective on DPC. Prior work [25], [27] has
shown that neural networks can effectively learn nonlinear
encoder–decoder mappings to perform binning, which is a key
mechanism that is known to be difficult to design analytically.
Motivated by these insights, we explore how similar benefits
can be realized in the DPC setting, where learning-based
models are naturally suited to capture the nonlinear transforms
that may aid in effective interference pre-cancellation.

As such, we revisit the classical DPC problem from a
learning perspective, proposing a data-driven approach where
both the encoder and decoder are parameterized by neural
networks trained jointly. To overcome the smoothness bias
that arises in artificial neural networks [33], [34], which
makes them prone to underfitting periodic functions [35], we
incorporate theory-guided design choices by using sinusoidal
activation functions. This architectural choice enables the
model to recover the modulo-like behavior characteristic of
THP and lattice-based precoding schemes. Furthermore, the
model requires no prior knowledge of the channel, inter-
ference, or input distribution, and instead learns to adapt
its behavior directly from data in the presence of known
interference. It not only matches or exceeds the performance
of schemes such as THP and lattice-based solutions, but also

The encoder maps  and known interference  
 to an input , subject to an 

average power constraint. 

V
S X

As shown in [23], the resultant equivalent channel can be
expressed as an additive noise channel given by:

Ỹ = v +N → mod !, (9)

where N → = (1→ ω)U + ωN mod !.
Since the encoder output is uniformly distributed over the

fundamental Voronoi region of the lattice, its power and
entropy are directly determined by the shape of the chosen
lattice. For a fixed volume (i.e., fixed entropy), certain lattices
can achieve lower average power than the hypercube, particu-
larly in high dimensions [39]. This power gain translates into
a corresponding increase in mutual information when modulo-
lattice coding is applied for DPC [23].

D. Modeling assumptions

In this paper, we consider an uncoded transmission setting,
where the encoder and decoder can be viewed as interfacing
with conventional channel coding blocks. This setup isolates
the impact of learning on the encoder–decoder mappings and
highlights the ability of neural networks to model nonlinear
transformations useful for interference pre-cancellation. The
input to the encoder consists of uniformly distributed mes-
sages v ↑ V . We assume that these messages are initially
mapped to a one or two-dimensional modulation scheme,
such as BPSK or QPSK, which are subsequently encoded
based on interference. Our approach focuses on learning the
encoder and decoder mappings to minimize the symbol error
rate (SER).

III. NEURAL DIRTY PAPER CODING (DPC) SCHEME

We consider a learning-based one-shot DPC scheme in
which both the encoder and decoder in Fig. 1 are parameter-
ized by neural networks and trained end-to-end. The encoder
is represented by a deterministic function eω : V ↓Rk ↔ Rk,
where ε denotes its encoder parameters, V ↑ V is the message
index to be transmitted, and S ↑ Rk is the interference known
noncausally by the transmitter. The state and output dimension
k ↑ {1, 2} are determined by the initial modulation scheme,
e.g., k = 1 for BPSK and k = 2 for QPSK. The encoder
outputs the channel input X ↭ eω(V, S), which is subject to
an average power constraint.

The decoder is modeled as a probabilistic function pε :
Rk ↔ P(V), where ϑ denotes its parameters and P(V) is the
probability simplex over the message set. Given the received
channel output Y ↑ Rk, the decoder outputs a probability
distribution over possible messages in V . During inference,
we assume the decoder makes hard decisions, and the final
message estimate is obtained by selecting the most likely
message:

V̂ ↭ arg max
v↑{1,··· ,|V|}

pε(v|y), (10)

which results in SER = P (V ↗= V̂ ). The entire neural DPC
scheme is trained end-to-end by minimizing the following
objective:

L(ε,ϑ) = E
[
→ log pε(v|y) + ϖ↘eω(V, S)↘2

]
, (11)

(a) w/sinusoidal activations, scoring
SNR : 7.03 dB, SER : -1.10 dB.

(b) w/leaky ReLU activations, scoring
SNR : 8.83 dB, SER : -1.11 dB.

Fig. 2: Visualization of decision regions for the proposed learning-
based decoder, where the message V is initially mapped to QPSK,
with interference S → N (0, 30) and channel noise N → N (0, 1).
The models in both panels are trained with ω = 5 in Eq. (11).
The left figure shows the case where both the encoder and decoder
use sinusoidal activation functions, resulting in a highly regular
tiling reminiscent of the hexagonal lattice, which has the tightest
sphere packing in two dimensions [39, Chapter 3]. In contrast, the
right figure shows the decision map when leaky rectified linear
units (ReLU) activations are used instead (with all other parameters
unchanged), leading to irregular and less structured decision regions.

where the first term is the cross-entropy between the true
message V and the predicted distribution pε(v|y), serving as
a surrogate for minimizing SER. The second term penalizes
the ϱ2-norm of the encoder output X = eω(V, S), enforcing
an average power constraint. The hyperparameter ϖ controls
the trade-off between symbol detection accuracy and power
efficiency of encoder mapping.

Both the encoder and decoder are implemented as neural
networks with three fully connected layers of 128 units each,
excluding the output layers. The encoder takes as input the
concatenation of the message index v and the interference s,
and maps it to a channel input x ↑ Rk. All hidden layers use
sinusoidal activations, which we found particularly effective
for learning many-to-one mappings for the DPC setup under
consideration. Consistent with the findings in [35], we hy-
pothesize that the sinusoidal activations enable the network to
recover periodic mappings, which are essential for capturing
the modulo-like behavior inherent in structured precoding
schemes such as THP and lattice-based methods, as discussed
in Sec. II-C. We observed that sinusoidal activations naturally
support learning mappings that repeat over the interference
domain, much like the tiling behavior of a quantizer or
modulo-lattice operation as in Eqs. (6)–(8). As shown in both
panels of Fig. 2 (which will be further discussed in Sec. IV),
replacing sinusoidal activations (Fig. 2a) with standard leaky
rectified linear units (ReLU) functions (Fig. 2b) significantly
alters the mapping recovered at the decoder, disrupting the
emergence of a hexagonal tessellation.

We implement our experiments in the JAX framework [40],
and train the neural DPC schemes using the Adam opti-
mizer [41] for 500 epochs, by which point the loss is visibly
converged. All empirical evaluations, including power and
SER estimates, are obtained by averaging over 220 samples.

Ozyilkan, Ulger & Erkip (IEEE ITW, 2025)
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Relay and destination signals are correlated: distributed compression techniques
like Wyner-Ziv (WZ) coding can be used
... but practical distributed compressors have not been fully developed

We model relays as learned WZ compressors [1] in a simple communication
system → learned CF strategy
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• Relay and destination signals are correlated:  
Distributed compression techniques, like Wyner-Ziv, can be useful!

• …but practical relaying schemes have not been fully developed.

• We model relays as learned distributed compressors  
learned compress-and-forward strategy.→

Ozyilkan*, Carpi*, Garg & Erkip (IEEE SPAWC, 2024)
Ozyilkan*, Carpi*, Garg & Erkip (IEEE J. Sel. Areas in Communications, 2025)
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• Relay’s POV: Simplest compression setup w/ channel coding. 

• Compress  to help destination decode  via orthogonal noiseless link.YR W

Detection-Oriented Relays System Model

Primitive Relay Channel (PRC) – out-of-band relay

bits

Ch.

Enc.
Mod.

Source

p(yD, yR |x)

Relay

Enc.

Relay

Demod.
Ch.

Decod.

est. bits

Destination

W X YD

YR

p(w |yD, u)

U

R

Relay’s POV: compress YR to help the destination decode W

CF is optimal for oblivious relaying [1]
Task-aware design: detection-oriented relays

Task: symbol detection (demodulation)
Goal: maximize communication rate I(X ;YD ,U) subject to rate constraint R

[1] O. Simeone, E. Erkip, S. Shamai, “On codebook information for interference relay channels with out-of-band relaying,” IEEE TIT 2011
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• Compress-and-forward (CF) is optimal for oblivious relaying in PRC.

• Goal: maximize communication rate  subject to rate constraint I(X; YD, U) R
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Simeone, Erkip & Shamai (IEEE Trans. On Information Theory, 2011)
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• Source: equally likely symbols, power constraint  

• Real channel: BPSK, 4-PAM, 8-PAM 

• Complex channel: QAM, 16-QAM

P = 𝔼[∥X∥2]

Detection-Oriented Relays Results

Simulation Scenario

W Modulator p(yD, yR |x)

Relay

Demodulator argmax Ŵ
X YD

YR

pω(w |yD, eε(yR))

R
eε(YR)

Source: equally likely symbols, power constraint P = E[|X |
2]

Real channel: BPSK, 4-PAM, 8-PAM
Complex channel: QAM, 16-QAM

Channel: YD = X + ND and YR = X + NR , with ND → NR

(ND ,NR) (complex) Gaussian noise with variance (ϑ2
D
,ϑ2

R
)

SNR: ϖD = P/ϑ2
D

, ϖR = P/ϑ2
R

.
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YD

YR

R
eω(YR)

F. Carpi Learned Task-Aware Compression Methods in Communication Systems August 2024 28 / 31

Detection-Oriented Relays Results

Quantization and decisions for 4-PAM, ωD = ωR = 13 dB, R → 1

Relay

Demodulator

argmax Ŵ
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YD

YR

R
eω(YR)

R
eω(YR) = blue

R
eω(YR) = red

R
eω(YR)

Relay’s Compressor

Destination’s Demodulator

F. Carpi Learned Task-Aware Compression Methods in Communication Systems August 2024 29 / 31

Detection-Oriented Relays Results

Quantization and decisions for 4-QAM, ωD = ωR = 7 dB, R → 1

Relay

Demodulator

argmax Ŵ
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Summary on Neural Compress-and-Forward (CF)

• First proof-of-concept towards practical neural CF relaying scheme.

• Distributed compression helps in exploiting correlation at the destination.

• Ongoing project:

• Extending neural CF to diamond relay channel  
(i.e., w/ two relays connected to the destination via two separate links)
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Abstract—The diamond relay channel, where a source
communicates with a destination via two parallel relays, is one
of the canonical models for cooperative communications. We
focus on the primitive variant, where each relay observes a
noisy version of the source signal and forwards a compressed
description over an orthogonal, noiseless, finite-rate link to the
destination. Compress-and-forward (CF) is particularly effective
in this setting, especially under oblivious relaying where relays
lack access to the source codebook. While neural CF methods
have been studied in single-relay channels, extending them to
the two-relay case is non-trivial, as it requires fully distributed
compression without inter-relay coordination. We demonstrate
that learning-based quantizers at the relays can harness input
correlations by operating independently yet collaboratively,
enabling effective distributed compression in line with Berger–
Tung-style coding. Each relay independently compresses its
observation using a one-shot learned quantizer, and the
destination jointly decodes the source message. Simulation results
show that the proposed scheme, trained end-to-end with finite-
order modulation, operates close to the theoretical bounds. These
results demonstrate that neural CF can scale to multi-relay
systems while maintaining both performance and interpretability.

Index Terms—diamond relay channel, compress-and-forward,
distributed compression, task-aware compression, binning.

I. INTRODUCTION

Modern wireless systems, including cellular and cell-free
architectures, increasingly rely on distributed infrastructures
where remote radio heads handle radio and front-end
processing, while a central unit performs decoding and
coordination [1]. Distributed cooperative relaying is the basic
element in what is known as the Cloud Radio Access Network
(CRAN), where there are several relays, each of which
possesses a capacity-constrained backhaul link to a central
unit [2], [3], also referred to as a cloud decoder. Motivated
by CRAN, in this paper, we study the diamond relay channel

(DRC), a canonical model consisting of a source, two relays,
and a destination, where the relays assist in transmission via
two separate links to the destination, and no direct link exists
between the source and the destination [4].

When relay-to-destination links are rate-limited, efficient
compression becomes essential for maintaining high
throughput [2]. The primitive DRC, where each relay
forwards its noisy observation over an orthogonal (or out-
of-band) finite-rate link, provides a useful abstraction [5].
In this model, the compress-and-forward (CF) strategy [6]
is particularly effective, especially under oblivious relaying,
where relays are unaware of the source codebook [7]–[9]. The
oblivious setting aligns naturally with learning-based designs,
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Fig. 1: Primitive diamond relay channel model under consideration.
Red links indicate orthogonal (or out-of-band) relaying between the
two relays and the destination.

where relays learn to compress their observations directly
from data without requiring knowledge of the transmission
strategy adopted by the source.

Motivated by this connection, we extend prior work on
neural CF for single-relay channels to the primitive DRC
with independent Gaussian noises [10]. This extension is non-
trivial, as it requires fully distributed compression without
direct communication between relays. In this setting, the
information-theoretic technique known as compress–bin [11]
offers a reasonable strategy, yet it remains challenging
to implement in practice. To our knowledge, there are
no existing practical CF schemes that perform distributed
compress–bin considering multiple relays. We propose an end-
to-end learned framework where each relay independently
compresses its observation using a one-shot neural quantizer,
and the destination jointly decodes the source message.
Interestingly, although no explicit structure is imposed, the
learned compressors recover binning behavior consistent with
Berger–Tung-style distributed compression [11, Chapter 12],
enabling near-optimal performance under rate constraints.

Simulation results show that the proposed scheme, trained
end-to-end with finite-order modulation, operates close to
the theoretical bounds for the Gaussian primitive diamond
channel. These results underscore the promise of neural CF as
a scalable and interpretable solution for multi-relay systems.

II. SYSTEM MODEL

We consider the primitive DRC model in [12], as illustrated
in Fig. 1, where we consider a finite-order modulation in which
an index W → {1, . . . , |X |} is mapped to a symbol X → X ,
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where relays learn to compress their observations directly
from data without requiring knowledge of the transmission
strategy adopted by the source.

Motivated by this connection, we extend prior work on
neural CF for single-relay channels to the primitive DRC
with independent Gaussian noises [10]. This extension is non-
trivial, as it requires fully distributed compression without
direct communication between relays. In this setting, the
information-theoretic technique known as compress–bin [11]
offers a reasonable strategy, yet it remains challenging
to implement in practice. To our knowledge, there are
no existing practical CF schemes that perform distributed
compress–bin considering multiple relays. We propose an end-
to-end learned framework where each relay independently
compresses its observation using a one-shot neural quantizer,
and the destination jointly decodes the source message.
Interestingly, although no explicit structure is imposed, the
learned compressors recover binning behavior consistent with
Berger–Tung-style distributed compression [11, Chapter 12],
enabling near-optimal performance under rate constraints.

Simulation results show that the proposed scheme, trained
end-to-end with finite-order modulation, operates close to
the theoretical bounds for the Gaussian primitive diamond
channel. These results underscore the promise of neural CF as
a scalable and interpretable solution for multi-relay systems.

II. SYSTEM MODEL

We consider the primitive DRC model in [12], as illustrated
in Fig. 1, where we consider a finite-order modulation in which
an index W → {1, . . . , |X |} is mapped to a symbol X → X ,

e.g., non-terrestrial networks 
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Ozan Aygün, Ezgi Özyılkan, Elza Erkip
Department of Electrical and Computer Engineering, New York University, Brooklyn, NY

{ozan, ezgi.ozyilkan, elza}@nyu.edu

Abstract—The diamond relay channel, where a source
communicates with a destination via two parallel relays, is one
of the canonical models for cooperative communications. We
focus on the primitive variant, where each relay observes a
noisy version of the source signal and forwards a compressed
description over an orthogonal, noiseless, finite-rate link to the
destination. Compress-and-forward (CF) is particularly effective
in this setting, especially under oblivious relaying where relays
lack access to the source codebook. While neural CF methods
have been studied in single-relay channels, extending them to
the two-relay case is non-trivial, as it requires fully distributed
compression without inter-relay coordination. We demonstrate
that learning-based quantizers at the relays can harness input
correlations by operating independently yet collaboratively,
enabling effective distributed compression in line with Berger–
Tung-style coding. Each relay independently compresses its
observation using a one-shot learned quantizer, and the
destination jointly decodes the source message. Simulation results
show that the proposed scheme, trained end-to-end with finite-
order modulation, operates close to the theoretical bounds. These
results demonstrate that neural CF can scale to multi-relay
systems while maintaining both performance and interpretability.

Index Terms—diamond relay channel, compress-and-forward,
distributed compression, task-aware compression, binning.

I. INTRODUCTION

Modern wireless systems, including cellular and cell-free
architectures, increasingly rely on distributed infrastructures
where remote radio heads handle radio and front-end
processing, while a central unit performs decoding and
coordination [1]. Distributed cooperative relaying is the basic
element in what is known as the Cloud Radio Access Network
(CRAN), where there are several relays, each of which
possesses a capacity-constrained backhaul link to a central
unit [2], [3], also referred to as a cloud decoder. Motivated
by CRAN, in this paper, we study the diamond relay channel

(DRC), a canonical model consisting of a source, two relays,
and a destination, where the relays assist in transmission via
two separate links to the destination, and no direct link exists
between the source and the destination [4].

When relay-to-destination links are rate-limited, efficient
compression becomes essential for maintaining high
throughput [2]. The primitive DRC, where each relay
forwards its noisy observation over an orthogonal (or out-
of-band) finite-rate link, provides a useful abstraction [5].
In this model, the compress-and-forward (CF) strategy [6]
is particularly effective, especially under oblivious relaying,
where relays are unaware of the source codebook [7]–[9]. The
oblivious setting aligns naturally with learning-based designs,
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Fig. 1: Primitive diamond relay channel model under consideration.
Red links indicate orthogonal (or out-of-band) relaying between the
two relays and the destination.

where relays learn to compress their observations directly
from data without requiring knowledge of the transmission
strategy adopted by the source.

Motivated by this connection, we extend prior work on
neural CF for single-relay channels to the primitive DRC
with independent Gaussian noises [10]. This extension is non-
trivial, as it requires fully distributed compression without
direct communication between relays. In this setting, the
information-theoretic technique known as compress–bin [11]
offers a reasonable strategy, yet it remains challenging
to implement in practice. To our knowledge, there are
no existing practical CF schemes that perform distributed
compress–bin considering multiple relays. We propose an end-
to-end learned framework where each relay independently
compresses its observation using a one-shot neural quantizer,
and the destination jointly decodes the source message.
Interestingly, although no explicit structure is imposed, the
learned compressors recover binning behavior consistent with
Berger–Tung-style distributed compression [11, Chapter 12],
enabling near-optimal performance under rate constraints.

Simulation results show that the proposed scheme, trained
end-to-end with finite-order modulation, operates close to
the theoretical bounds for the Gaussian primitive diamond
channel. These results underscore the promise of neural CF as
a scalable and interpretable solution for multi-relay systems.

II. SYSTEM MODEL

We consider the primitive DRC model in [12], as illustrated
in Fig. 1, where we consider a finite-order modulation in which
an index W → {1, . . . , |X |} is mapped to a symbol X → X ,
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Fig. 4: Mutual information for the distributed scheme (Fig. 2a) under
BPSK, 4-PAM, and 8-PAM modulations with ωR1 = ωR2 = 5
dB. Solid lines represent bounds from [9], [12] where rates from
both relays are chosen as R1 = R2 = R→. Dashed lines represent
performance of two perfect relays (i.e., R1 → ↑, R2 → ↑) for the
respective curves, similar to Fig. 3.

relative to the midpoints between PAM symbols, which would
be optimal thresholds without relaying, but are also more finely
partitioned.

This figure also reflects how the demodulator at the
destination learns to make decisions over combinations of
quantized indices. For instance, when the square symbol is
transmitted, the encoders are likely to produce index light
red from Relay 1 and index light purple from Relay 2. In
this case, the corresponding decision region for the square
symbol at the destination becomes larger than those of other
symbols, demonstrating how the learned demodulator adapts
the likelihood pω(w|eε1(yR1), eε2(yR2)) based on the received
indices from the two relays. Moreover, we observe that the
joint combinations of indices from both encoders can result
in the same combination being assigned to multiple disjoint
regions, for example, the combination represented by the
orange color in Fig. 5c, which appears in two nonadjacent
regions. To illustrate this behavior more precisely, we consider
the following example. Even when the signal YR2 lies
within a region typically associated with the cross symbol,
the demodulator may instead assign the triangle symbol.
This occurs due to the shared brown index across the four
nonadjacent regions, as shown in Fig. 5c. Such a pattern
suggests that the encoders prioritize finer quantization around
the origin, where multiple decision boundaries cluster, while
tolerating overlap in the off-center regions. This trade-off
reduces the SER in high-probability areas and simultaneously
leverages binning by assigning the same index to nonadjacent
regions, thereby reducing the compression rate.

Notably, such a compress-bin strategy does not emerge (not
shown) in the p2p scheme in, where the encoders, by nature,
do not exploit inter-relay correlation as seen in Fig. 2b. As a
result, the p2p scheme tends to require a higher rate to achieve
a similar SER level, particularly in the low-rate regime, as seen
in Fig. 3. A more detailed comparison of these behaviors will
be provided in the full version of the paper.

(a) (b)

(c)

Fig. 5: Visualization (best viewed in color) of learned encoders,
eω1 (YR1) in (a) and eω2 (YR2) in (b), and demodulator decisions
in (c) for 4-PAM modulation when R→ = R1+R2

2 ↓ 1.50 and
ωR1 = ωR2 = 10dB. Different colors for encoders represent
distinct quantization indices eω1(YR1) and eω2(YR2), while the colors
in the decision regions of the demodulator correspond to unique
combinations of quantization indices received from the two relays.
Vertical and horizontal lines indicate the decision boundaries of the
relay encoders, and markers represent the hard decisions made at the
demodulator. The transmitted symbols for each relay are shown near
the axes for reference.

V. FULL-PAPER SUBMISSION

The full version of the paper will include a more
comprehensive analysis of the learning objectives where we
explain our reasoning behind the loss function in more detail.
It will also present extended numerical results across a wider
range of modulation schemes, such as 4-QAM and 16-QAM,
and examine how performance varies with SNR and rate
constraints. In addition, the full paper will provide further
visualizations, including those for the p2p scheme shown in
Fig. 2b, offering deeper insights into the differences between
distributed and p2p strategies displayed in Fig. 2.

(a) (b)

(c)

Fig. 6: Visualization (best viewed in color) of learned distributed
encoders, eω1 (YR1) in (a) and eω2 (YR2) in (b), and demodulator
decisions in (c) for 4-PAM modulation when R → 1.50 and
ωR1 = ωR2 = 10dB. Different colors for encoders represent
distinct quantization indices eω1(YR1) and eω2(YR2), while the colors
in the decision regions of the demodulator correspond to unique
combinations of quantization indices received from the two relays.
Vertical and horizontal lines in (a) and (b) indicate the decision
boundaries of the relay encoders, and markers in (c) represent the
hard decisions made at the demodulator. The transmitted symbols by
each relay are also shown near the axis for reference.

similar SER level with the distributed one, particularly in the
low-rate regime, as seen in Fig. 3.

V. CONCLUSION

In this paper, we have extended the application of neural
CF scheme to the DRC setup, where two separated relays
compress their noisy observations and forward them to
the destination for joint decoding. To this end, the relay
compressors and the demodulator were parameterized by fully
connected neural networks and trained end-to-end. Simulation
results demonstrate that the proposed neural distributed CF
scheme consistently outperforms the benchmark p2p scheme,
while approaching the asymptotic behavior and operating
close to theoretical limits as the average relay rate increases.
We have evaluated performance across various modulation

schemes, both real and complex, and provided an explanation
on how the distributed neural CF architecture induces decision
regions at the destination that exhibit joint binning, resulting
in reduced compression rate.

As a future work, we plan to investigate robustness under
heterogeneous relay conditions, such as unequal SNRs or
asymmetric rate constraints. Another promising direction
is to generalize the framework to multi-source networks,
where relays must compress signals coming from multiple
transmitters.
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Apple, ML + Video Research

Moving forward, will be working on: 
perceptual optimization  
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