

Neural Distributed Data Compression and Communication

New solutions to old problems in information theory.

Ezgi Ozyilkan

PhD Defense
Dec 18, 2025

Neural Distributed Data Compression and Communication

New solutions to old problems in information theory.

Ezgi Ozyilkan

Joint work with:

- Jona Ballé (NYU), Fabrizio Carpi (→Samsung) and Elza Erkip (NYU)

PhD Defense
Dec 18, 2025

“[...] in first half of 2022, video accounted for a hefty 65.93% of total volume over the internet.”

– *Sandvine's Global Internet Phenomena Report, Jan. 2023*

Representative internet video

Source: Vimeo

“[...] in first half of 2022, video accounted for a hefty 65.93% of total volume over the internet.”

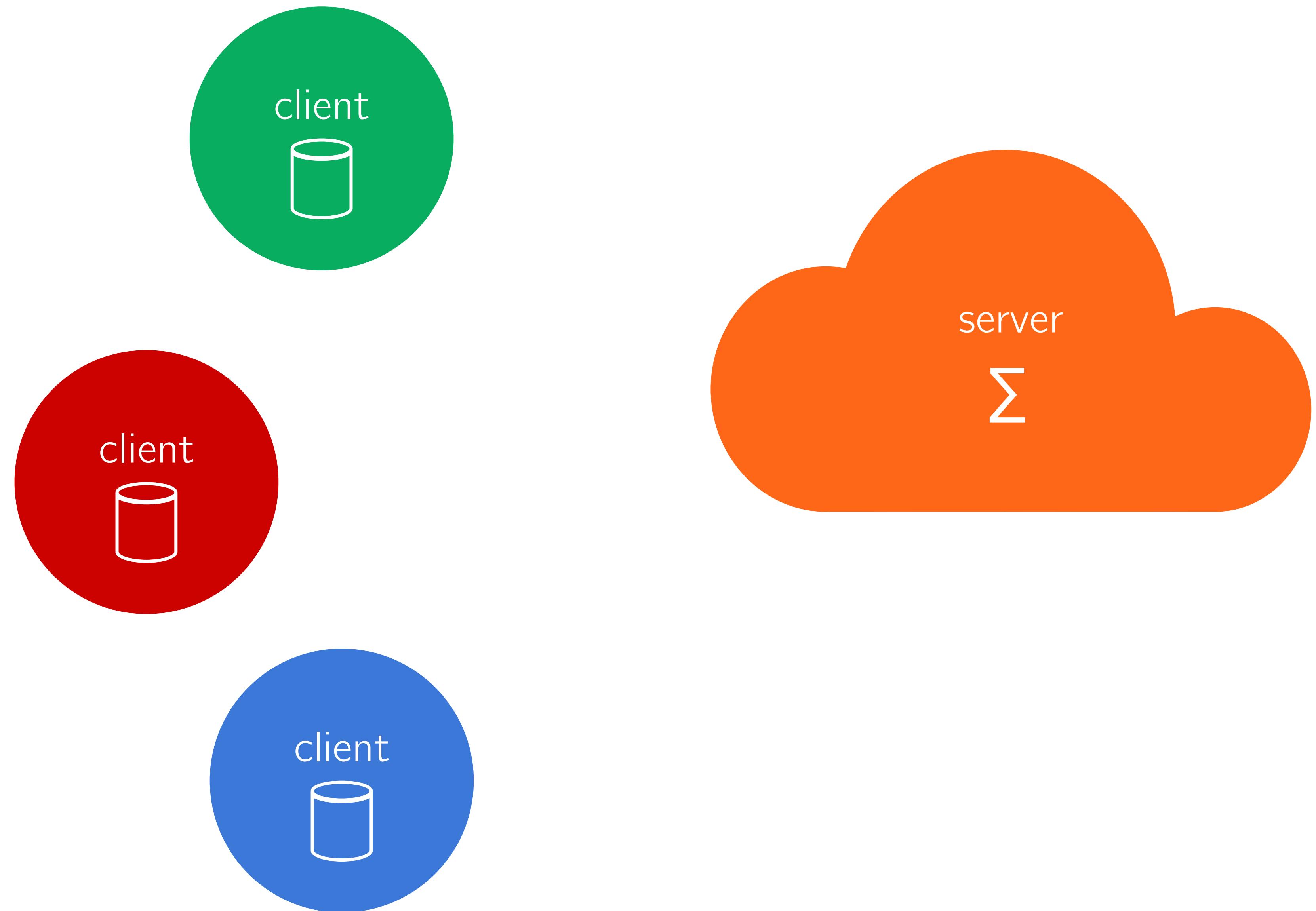
– *Sandvine's Global Internet Phenomena Report, Jan. 2023*

Representative internet video

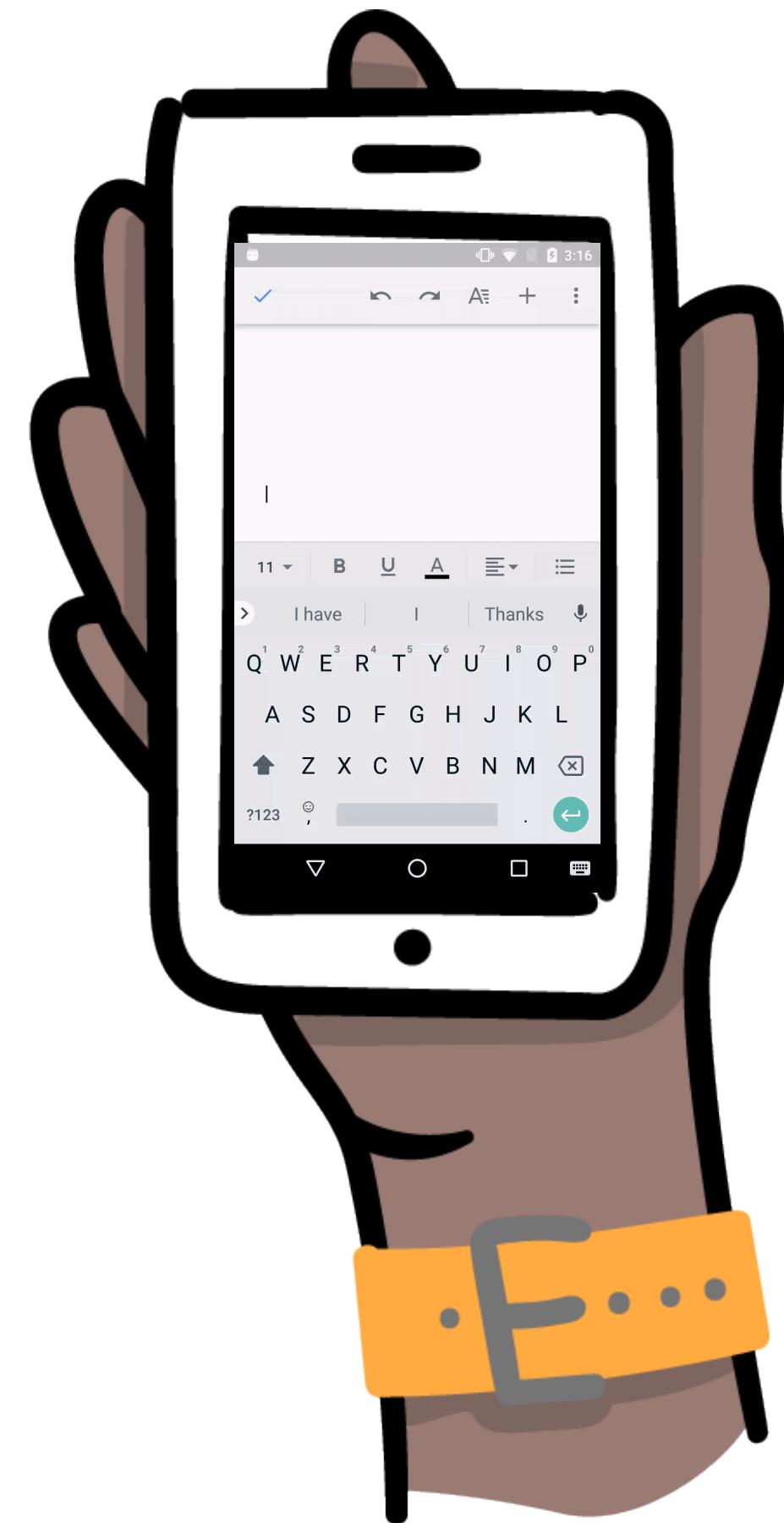
Source: Vimeo

Example: Federated learning

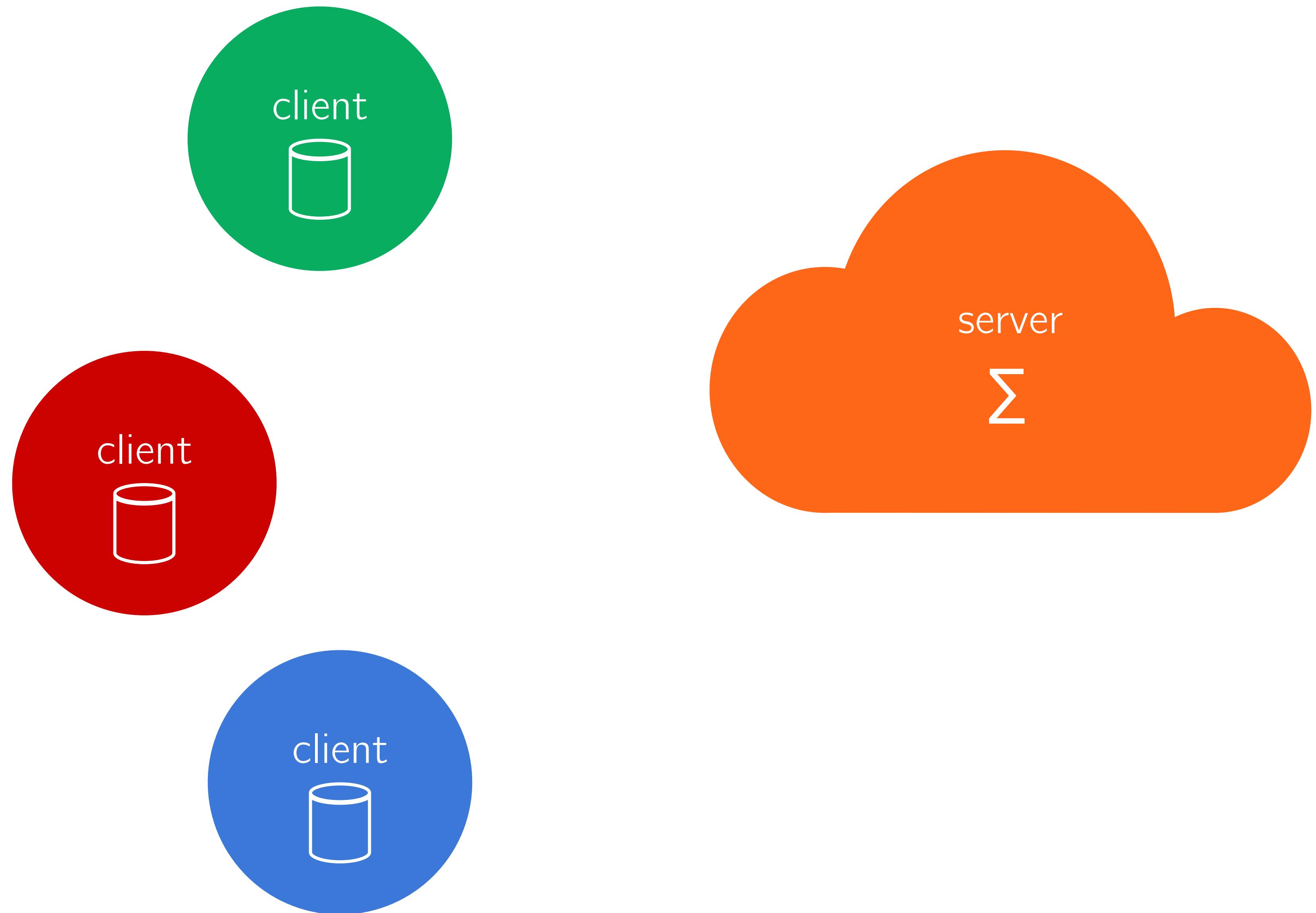
e.g., next-word
prediction



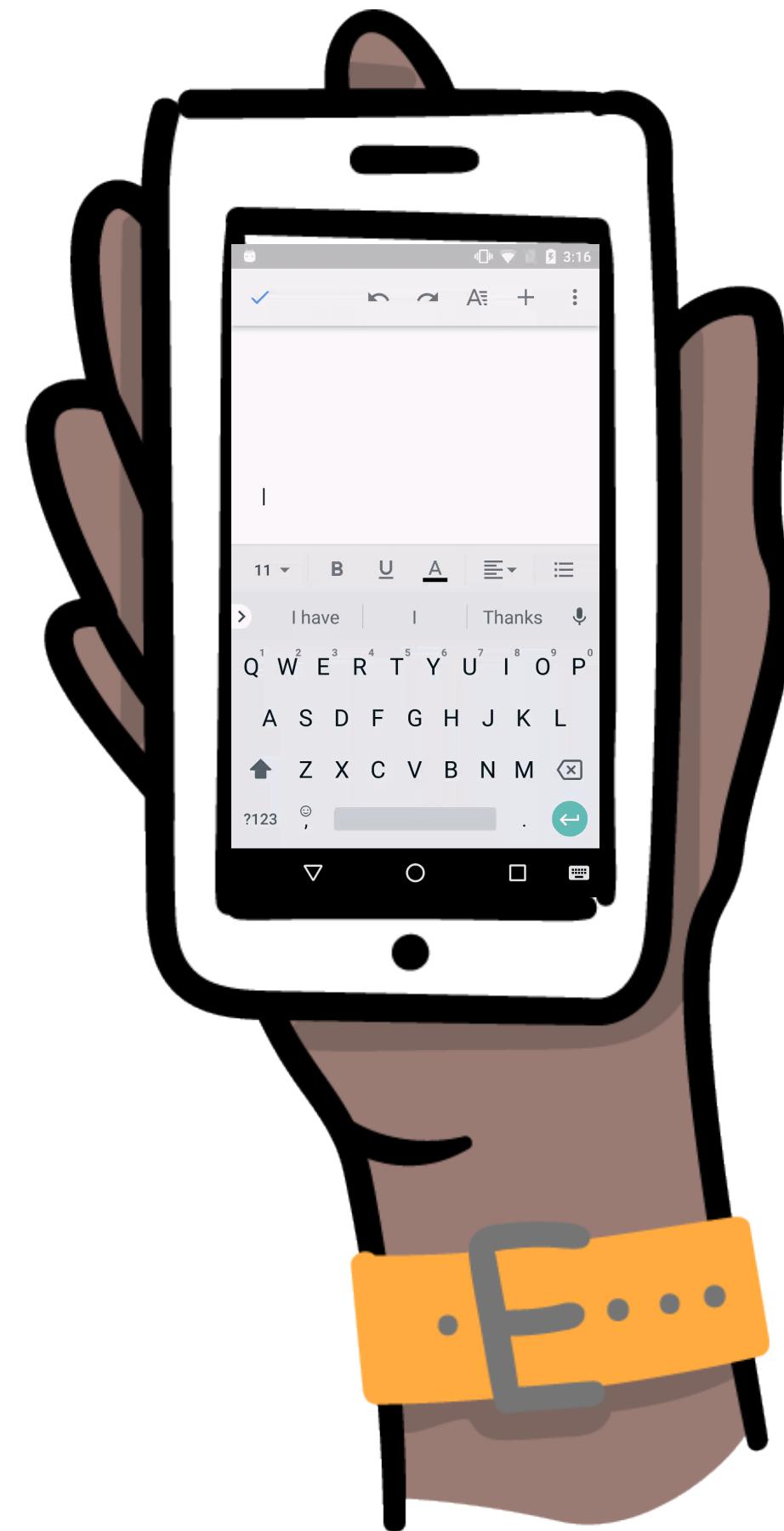
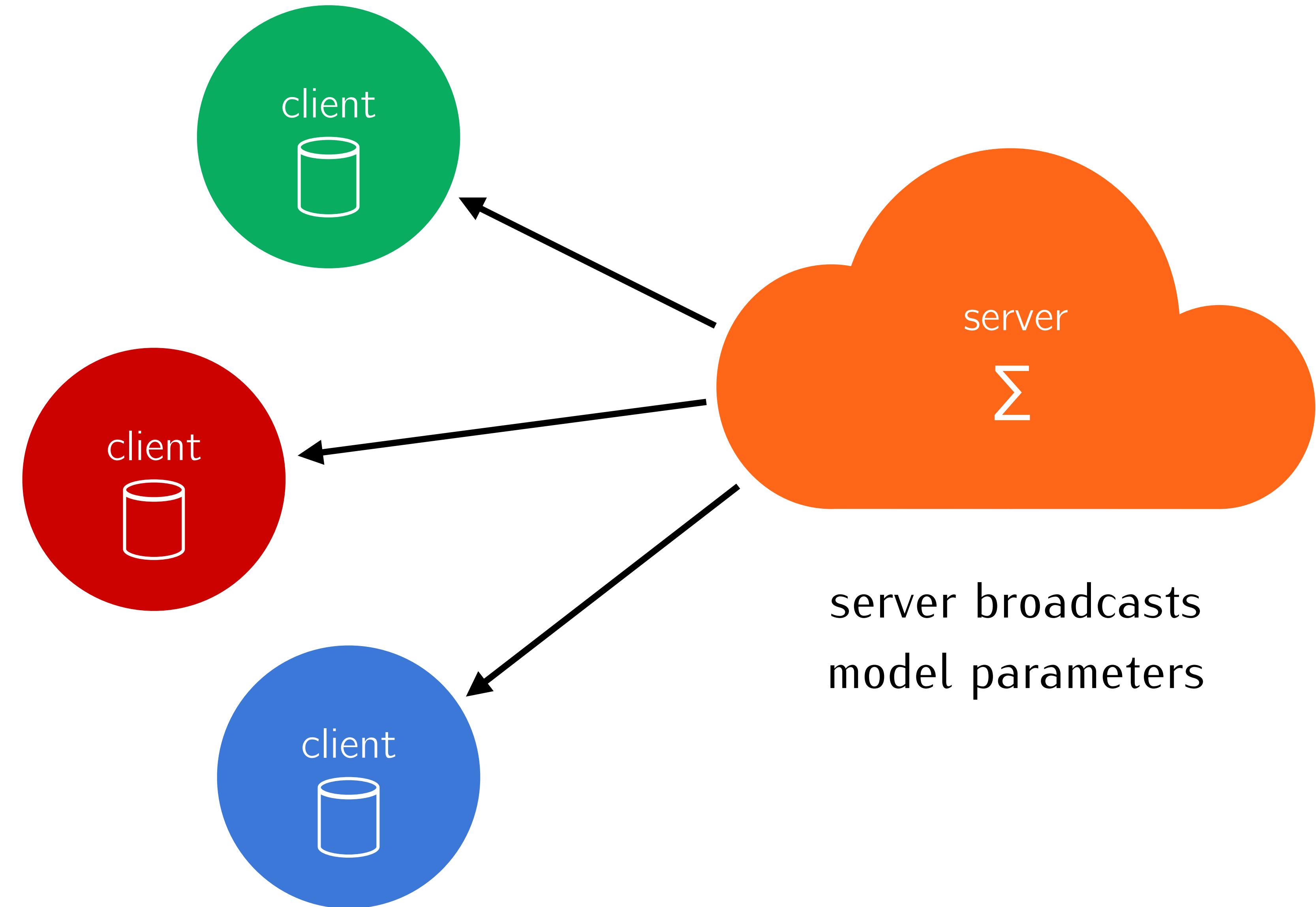
Example: Federated learning



e.g., next-word
prediction

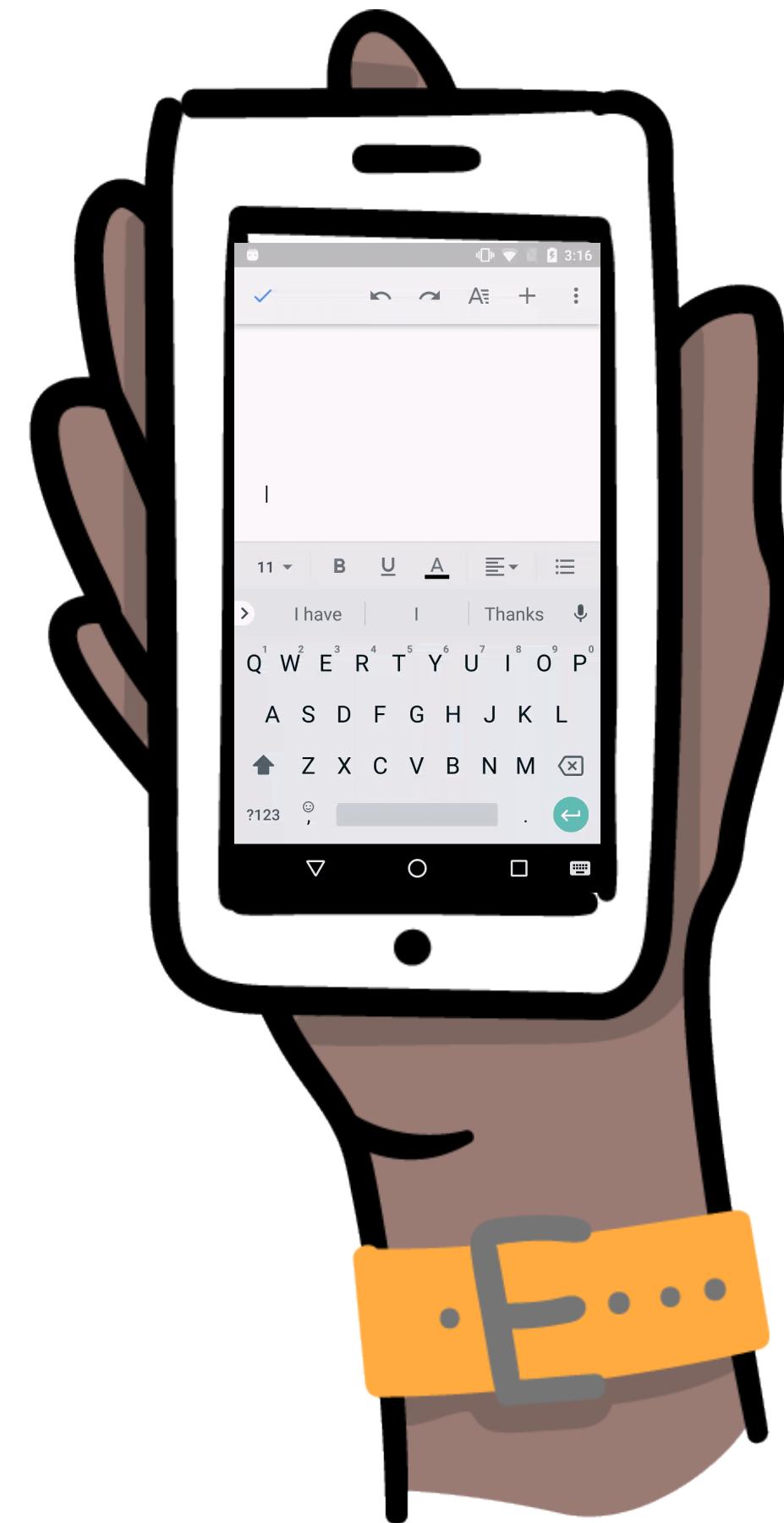


Example: Federated learning

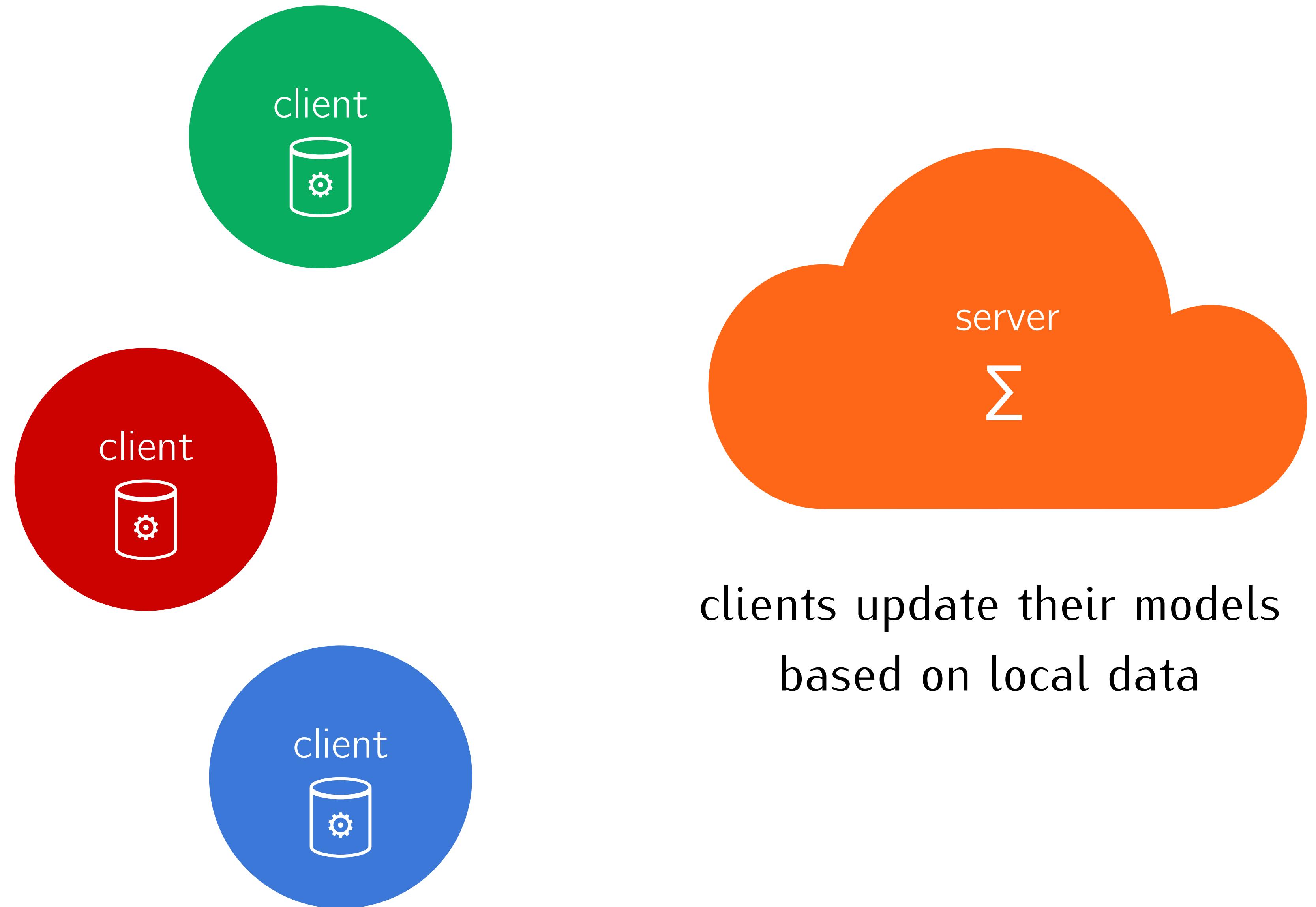


e.g., next-word prediction

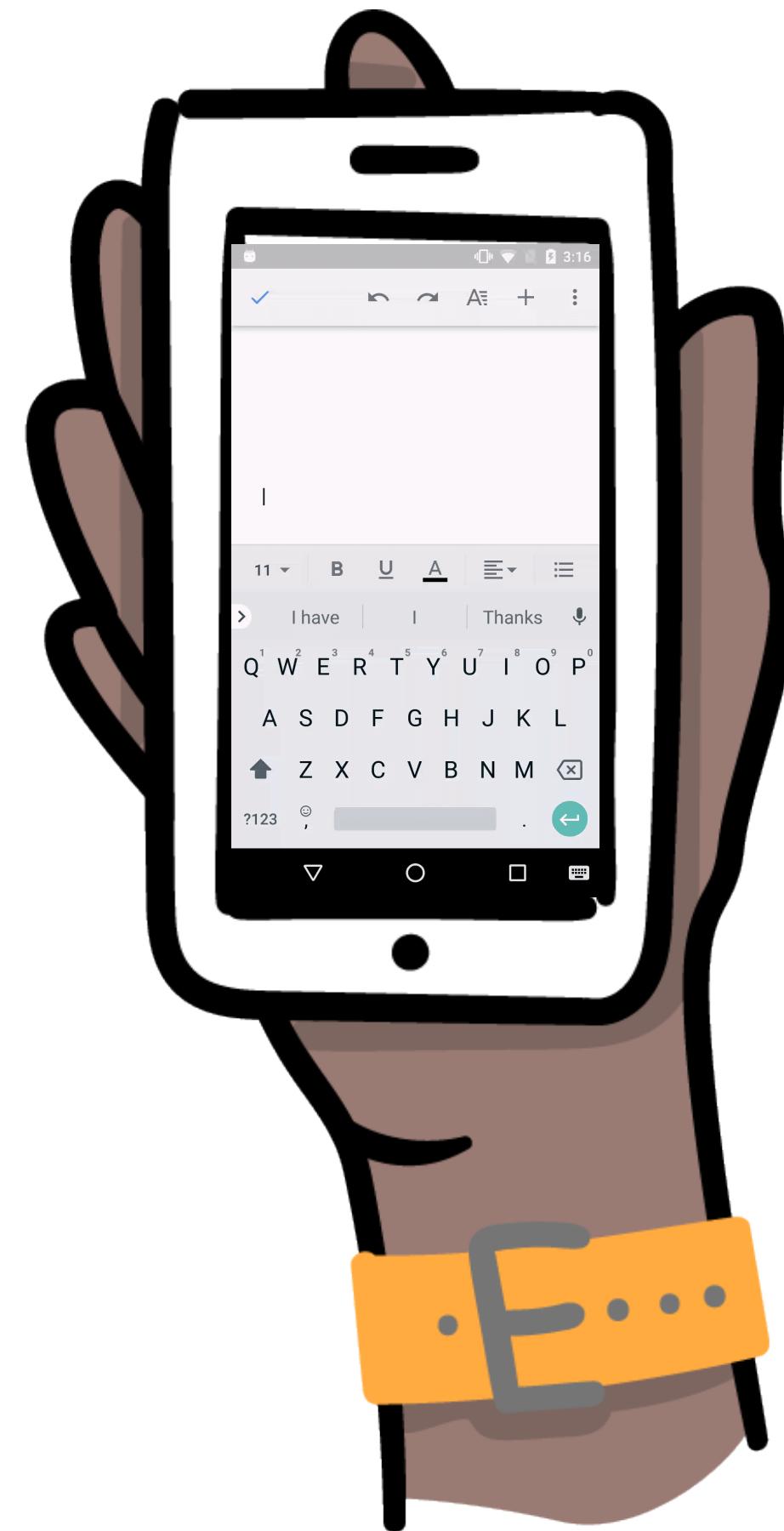
Example: Federated learning



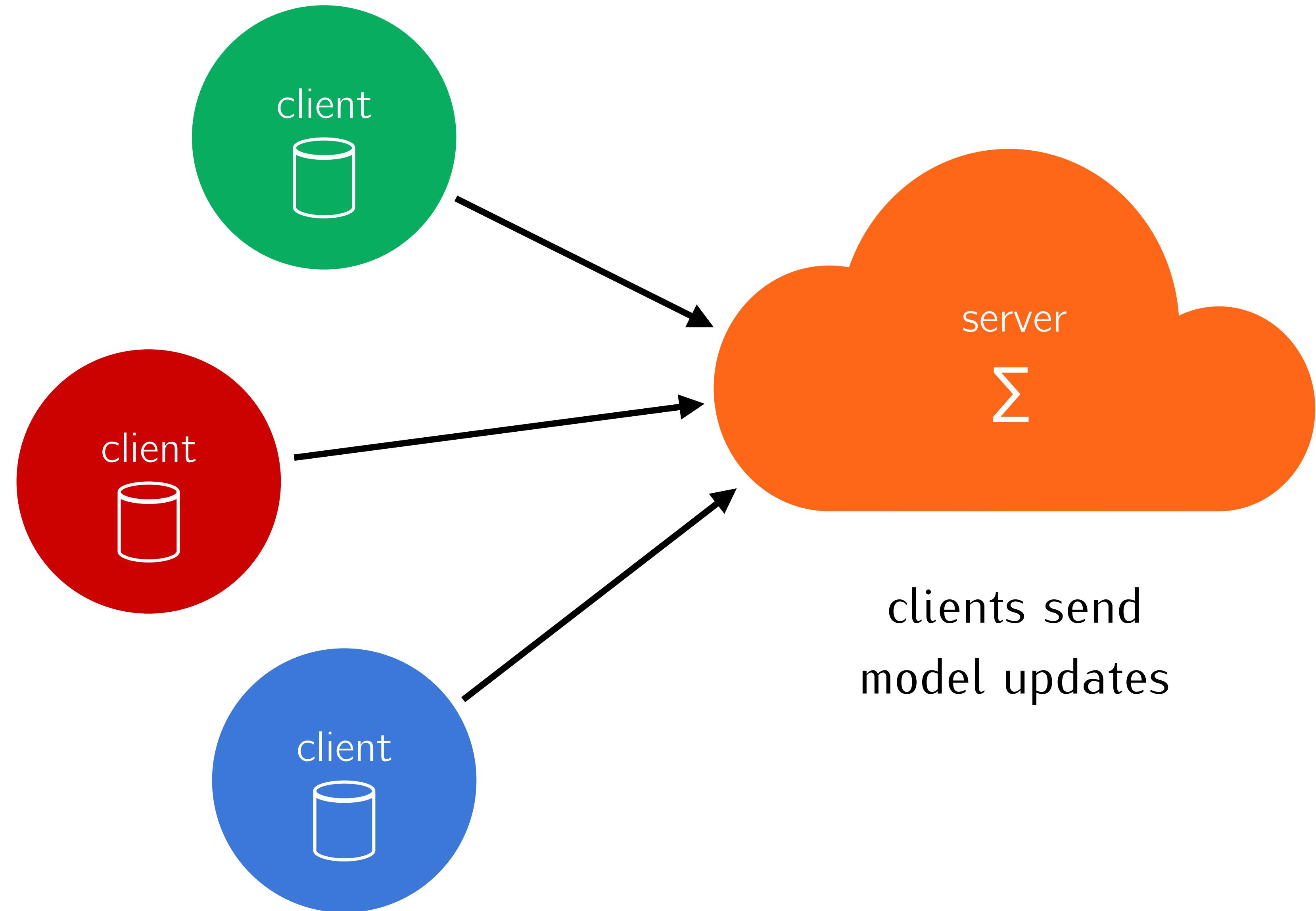
e.g., next-word
prediction



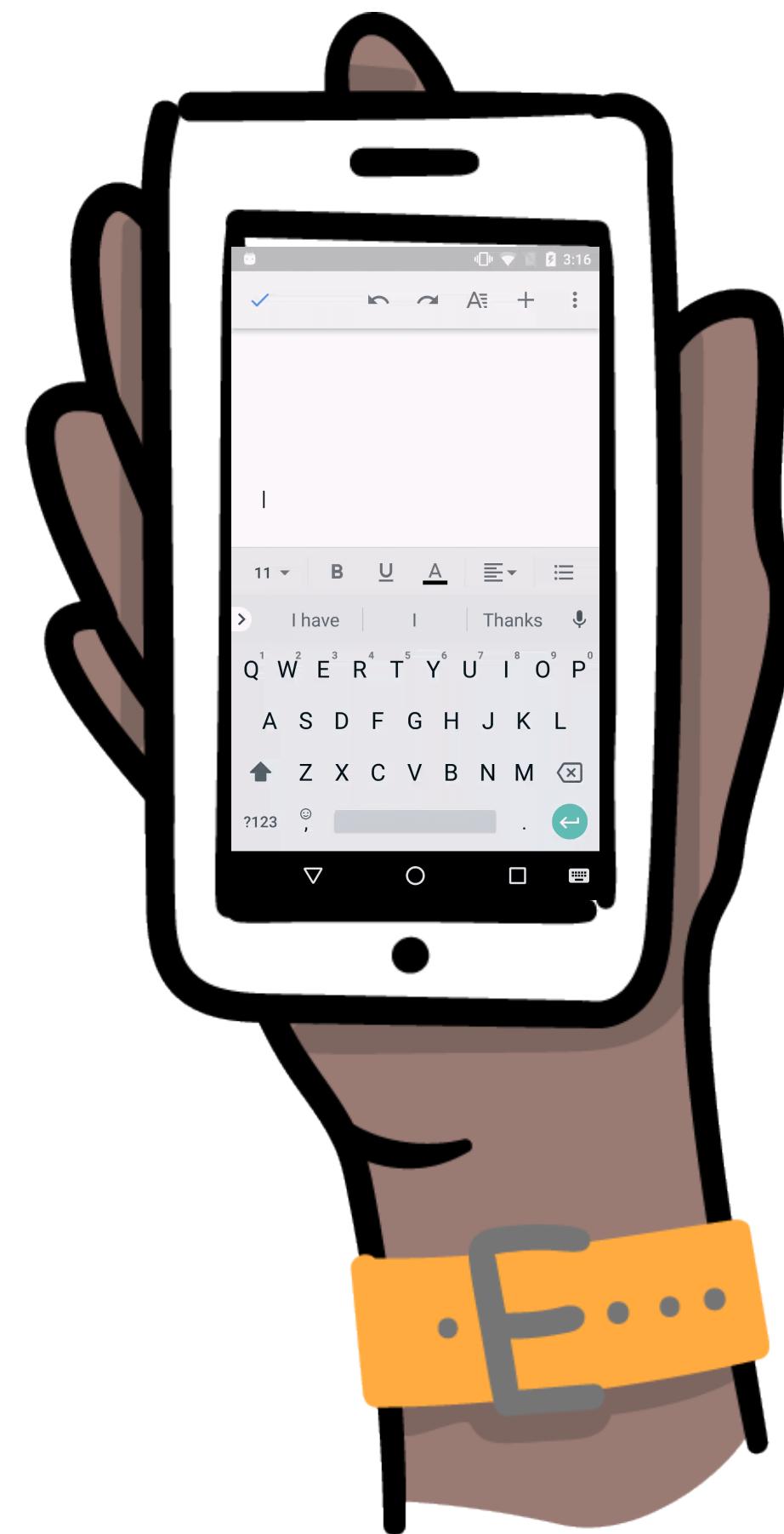
Example: Federated learning



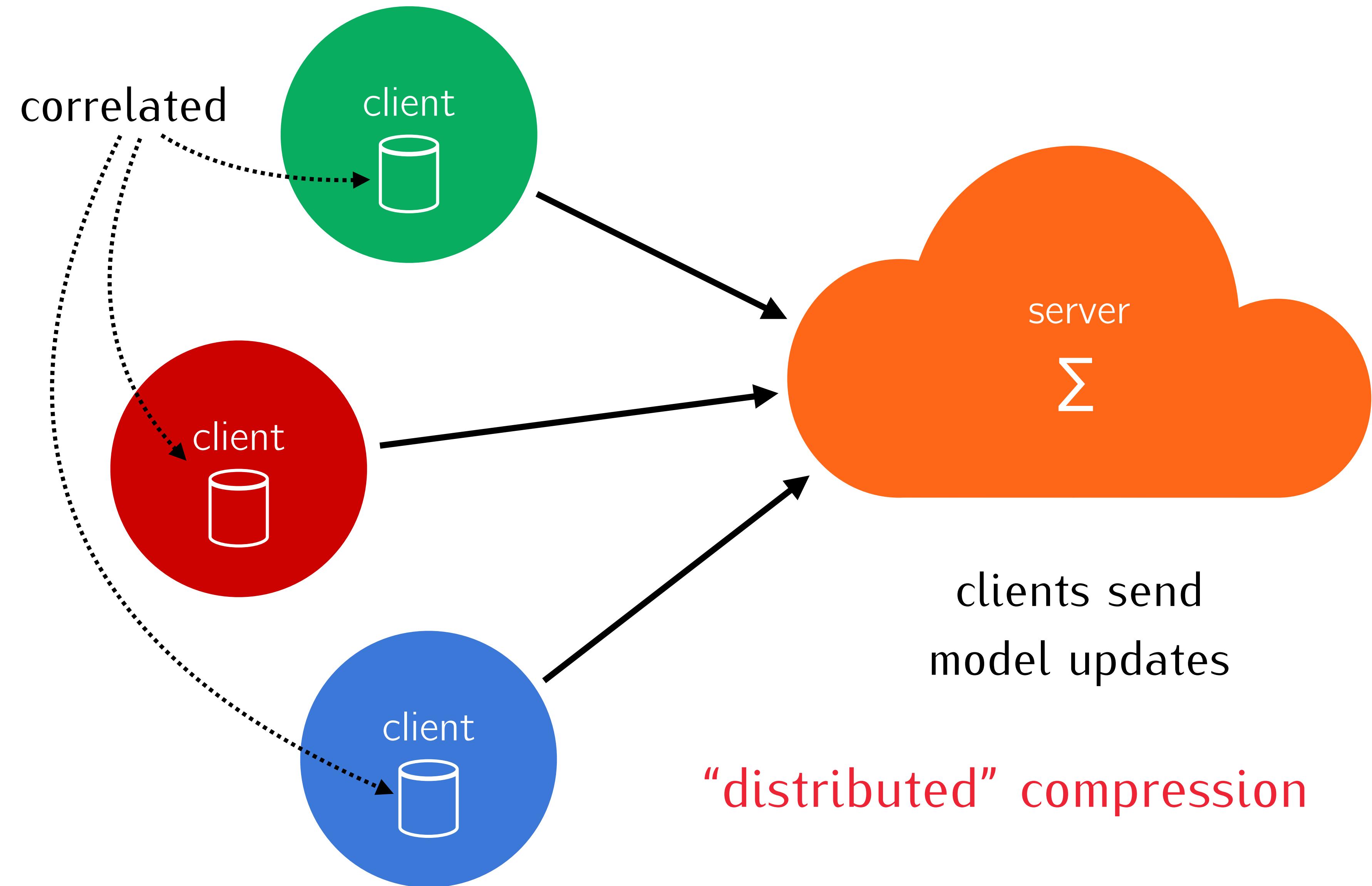
e.g., next-word
prediction



Example: Federated learning



e.g., next-word
prediction



Toy example for distributed compression

- Suppose X and Y are equiprobable 3-bit binary words.

Toy example for distributed compression

- Suppose X and Y are equiprobable 3-bit binary words.
- Let correlation pattern be such that $d_{hamming}(X, Y) \leq 1$.

Toy example for distributed compression

- Suppose X and Y are equiprobable 3-bit binary words.
- Let correlation pattern be such that $d_{hamming}(X, Y) \leq 1$.
- If Y is available at both encoder-decoder, describe X using 2 bits.
 - Realize that there are only 4 possibilities for $X + Y$, $\{000; 001; 010; 100\}$

Toy example for distributed compression

- Suppose X and Y are equiprobable 3-bit binary words.
- Let correlation pattern be such that $d_{hamming}(X, Y) \leq 1$.
- If Y is available at both encoder-decoder, describe X using 2 bits.
 - Realize that there are only 4 possibilities for $X + Y$, $\{000; 001; 010; 100\}$
- What if Y is “only” available at decoder ?
- X can still be described using only 2 bits !!

Toy example (continued)

- Realization:

Toy example (continued)

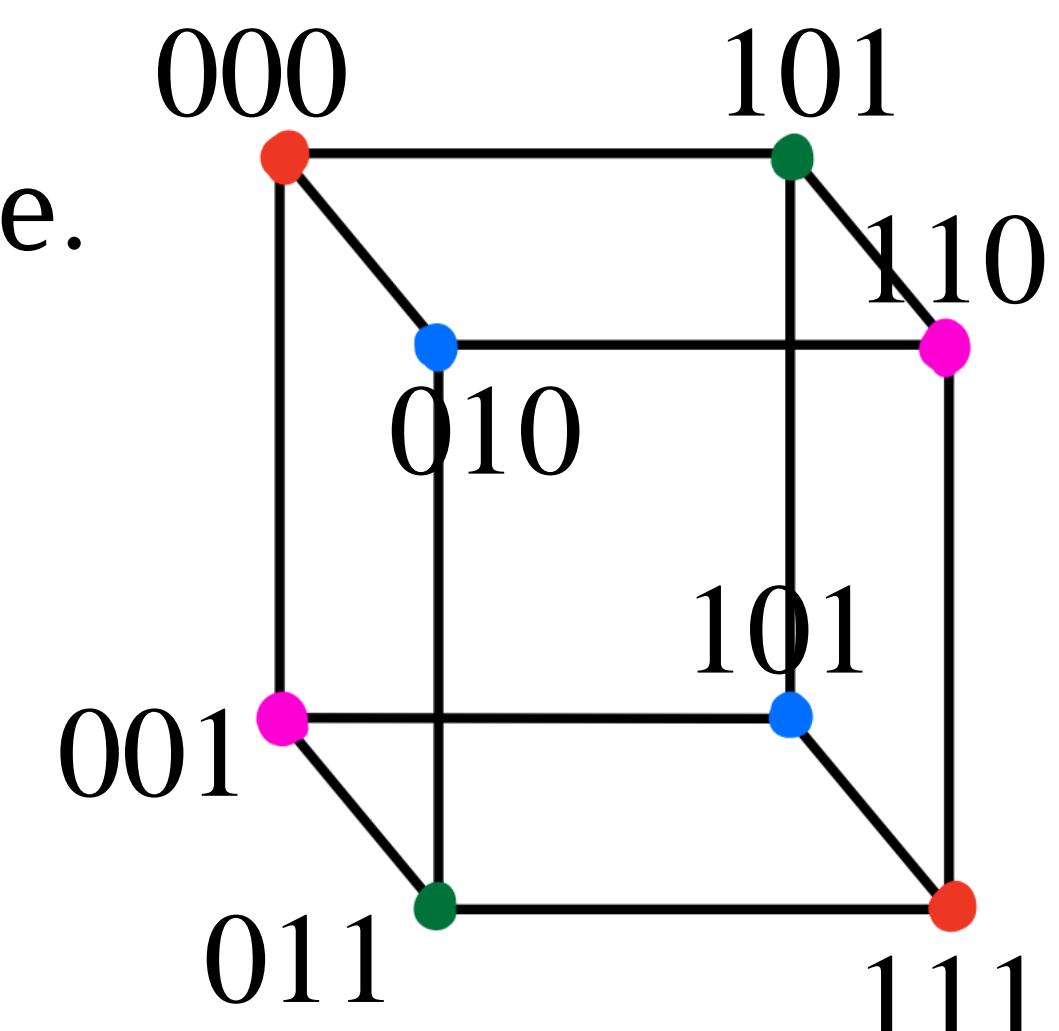
- Realization:
 - Wasteful to spend bits in differentiating X between ‘distant’ codewords.

Toy example (continued)

- Realization:
 - Wasteful to spend bits in differentiating X between ‘distant’ codewords.
 - Group 8 possible values of X into 4 groups (“binning”):
 - $B_0 = \{000; 111\}$, $B_1 = \{001; 110\}$, $B_2 = \{010; 101\}$, $B_3 = \{011; 100\}$
 - Send the index of the bin (or coset).

Toy example (continued)

- Realization:
 - Wasteful to spend bits in differentiating X between ‘distant’ codewords.
 - Group 8 possible values of X into 4 groups (“binning”):
 - $B_0 = \{000; 111\}$, $B_1 = \{001; 110\}$, $B_2 = \{010; 101\}$, $B_3 = \{011; 100\}$
 - Send the index of the bin (or coset).
 - **Resolve the uncertainty with Y** by checking Hamming distance.



“[...] despite the existence of potential applications,
the conceptual importance of distributed compression
has not been mirrored in practical data compression.”

50th year Commemorative Special Issue of Trans. on Information Theory

“[...] despite the existence of potential applications,
the conceptual importance of distributed compression
has not been mirrored in practical data compression.”

50th year Commemorative Special Issue of Trans. on Information Theory

Data-driven methods may help here!

Outline

1. Review:

“Learning” data compression via *Nonlinear Transform Coding*

Outline

2. New solutions to old problems in information theory:
 - a) distributed data compression: Wyner–Ziv and extensions
 - b) “compress-and-forward” for the relay channel

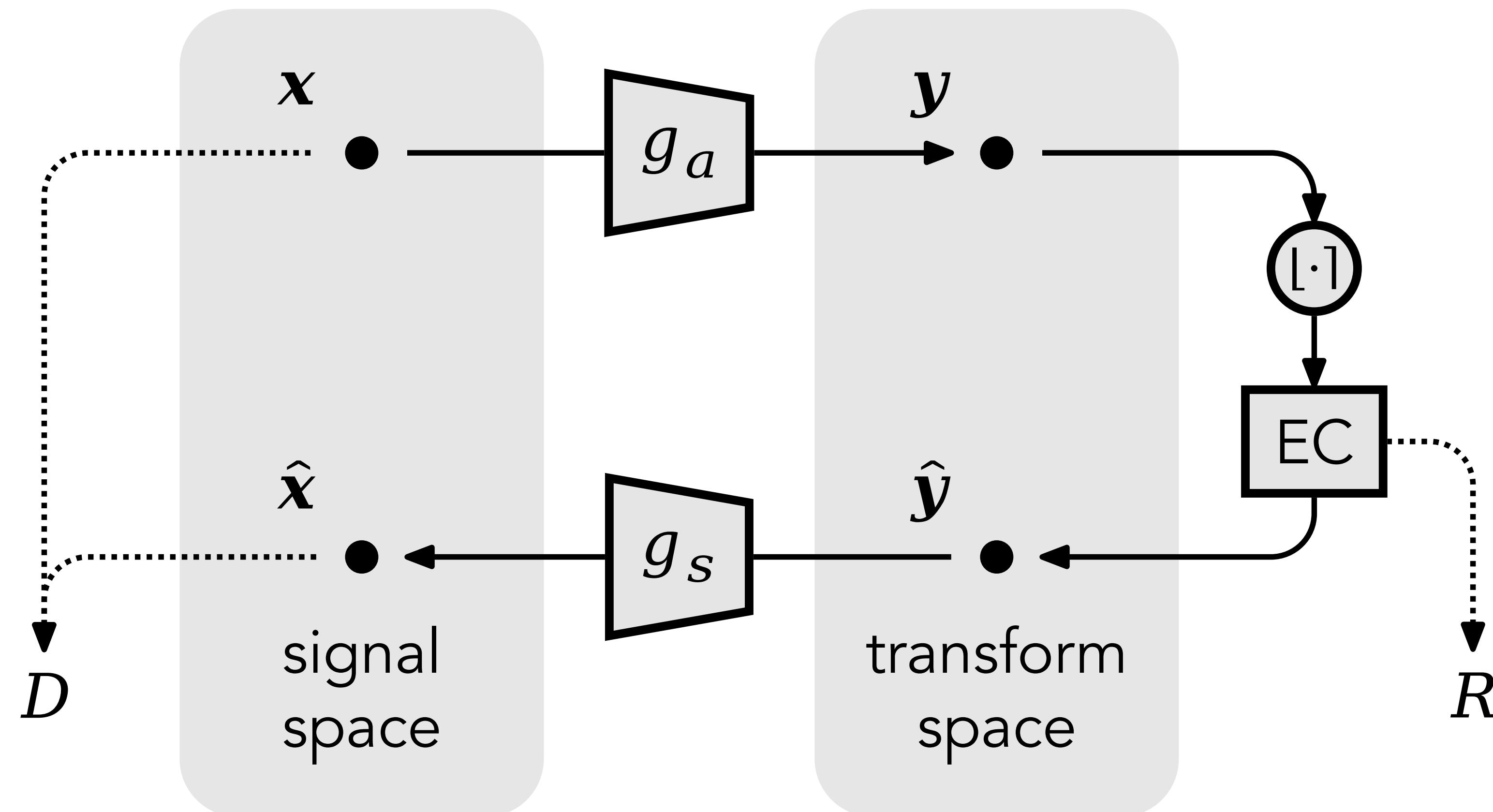
Part I

Review:

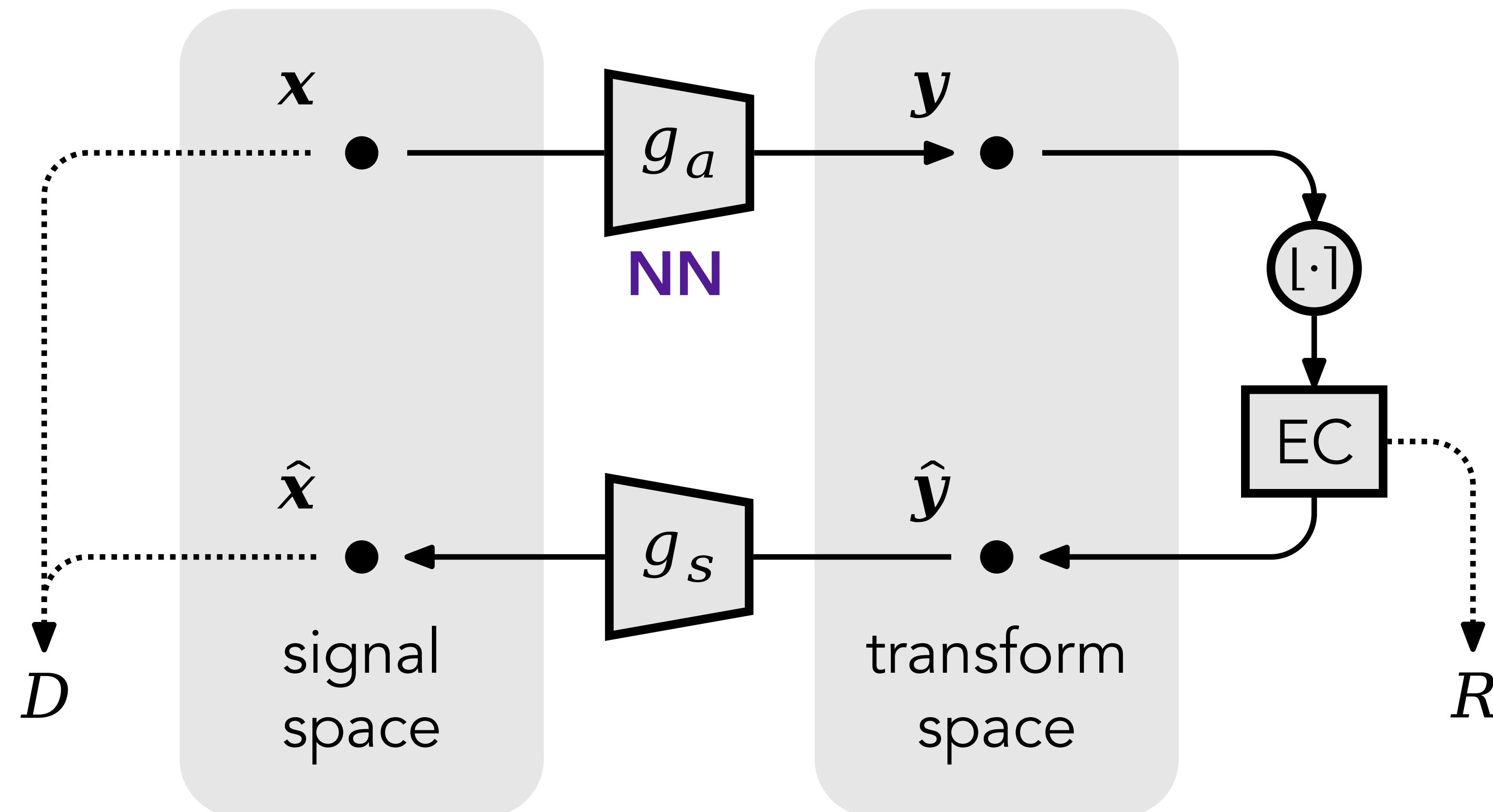
“Learning” Data Compression

via *Nonlinear Transform Coding*

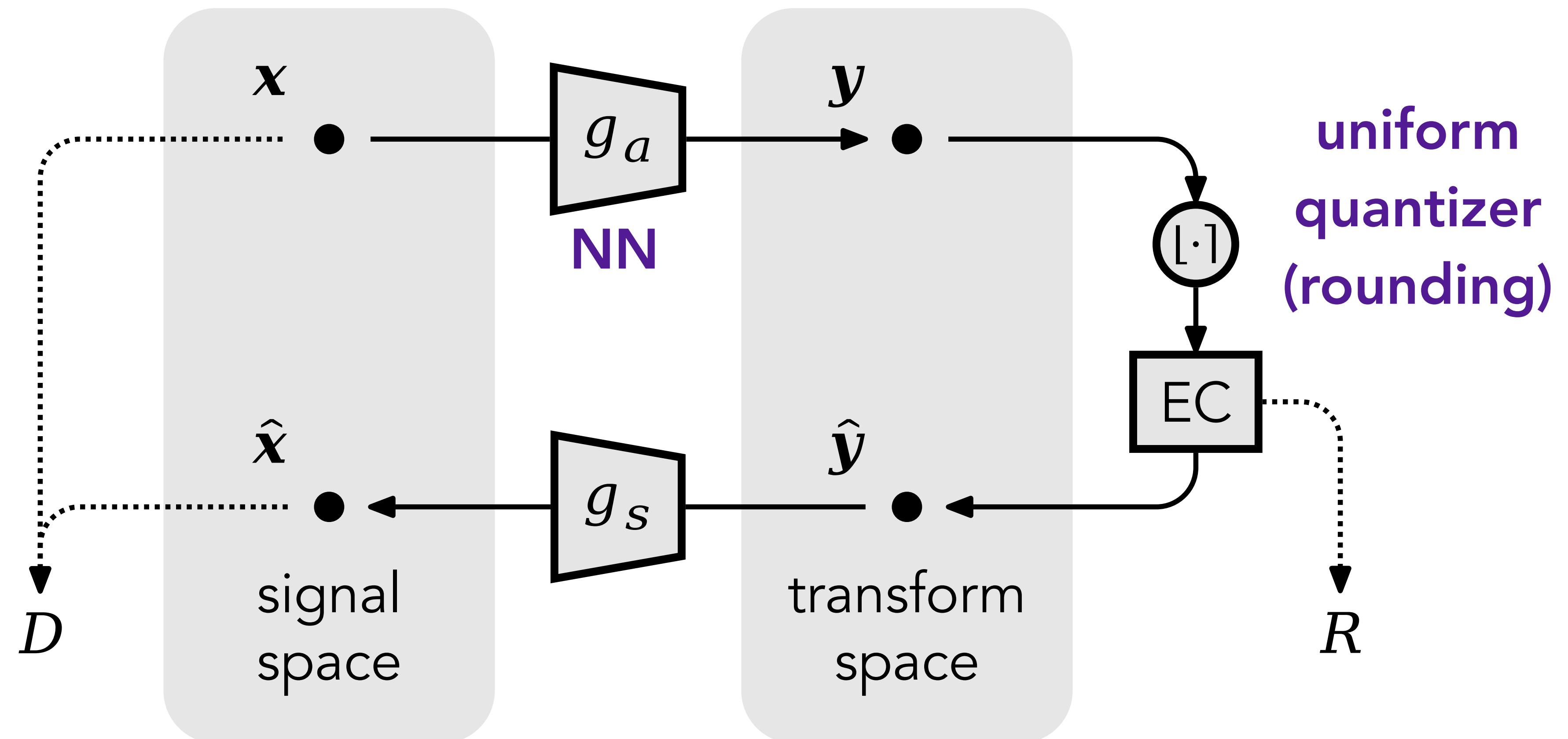
Nonlinear Transform Coding (NTC)



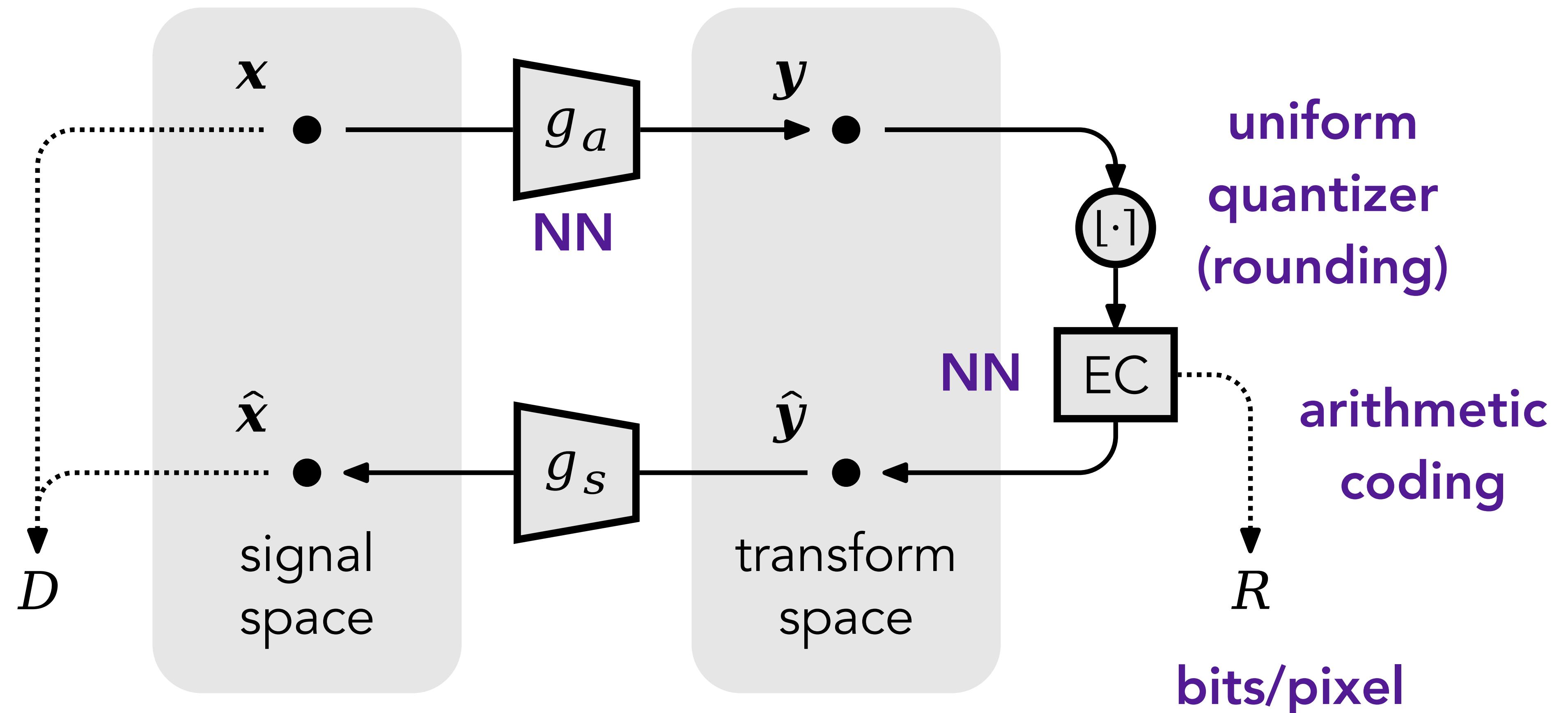
Nonlinear Transform Coding (NTC)



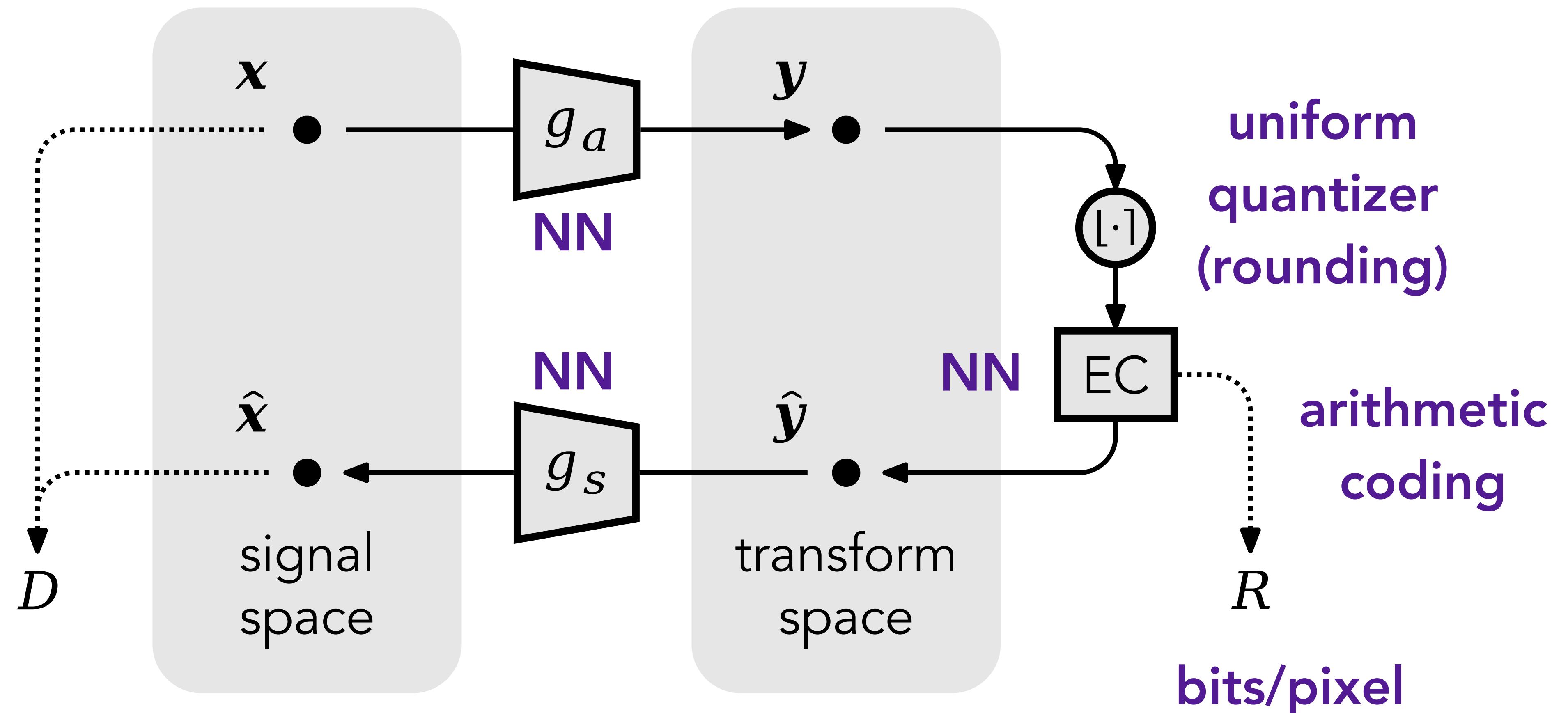
Nonlinear Transform Coding (NTC)



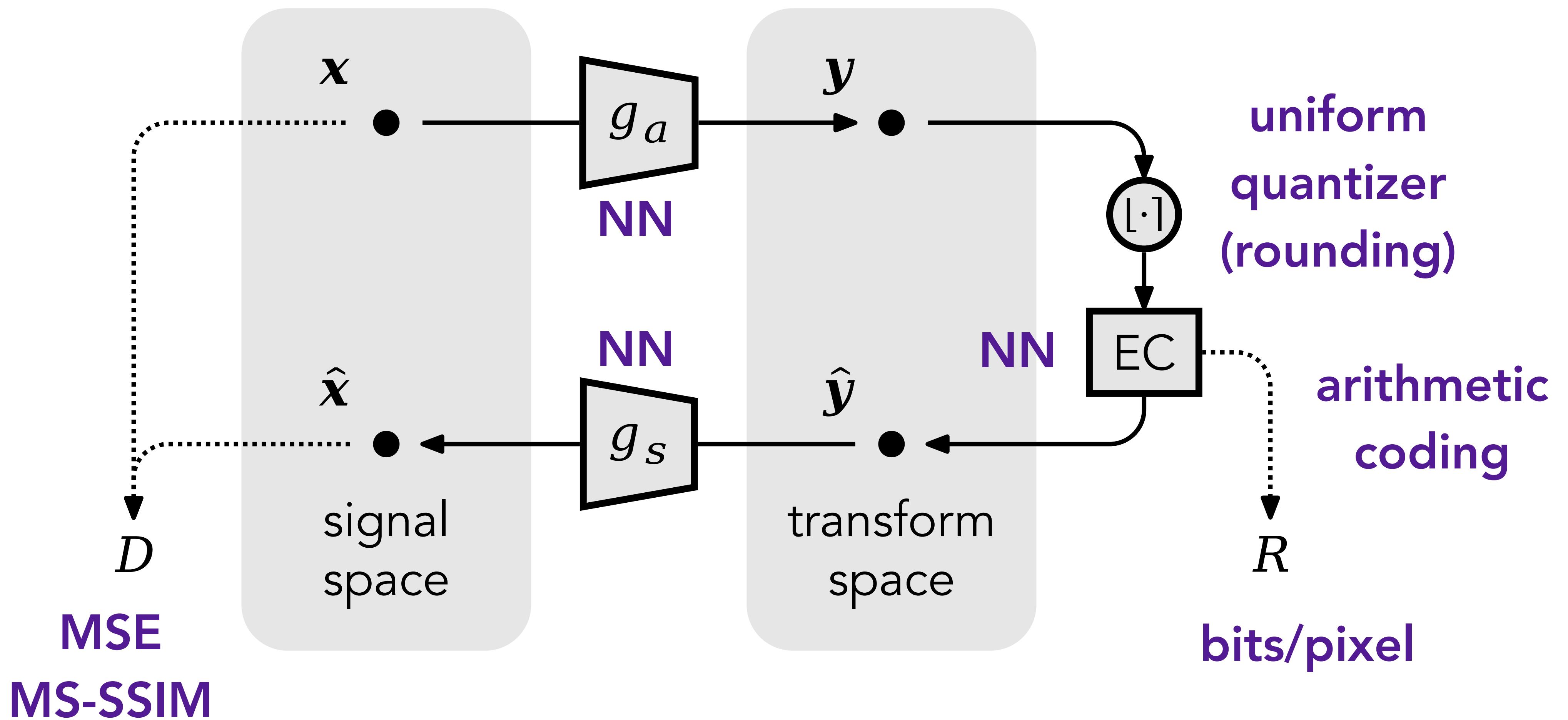
Nonlinear Transform Coding (NTC)



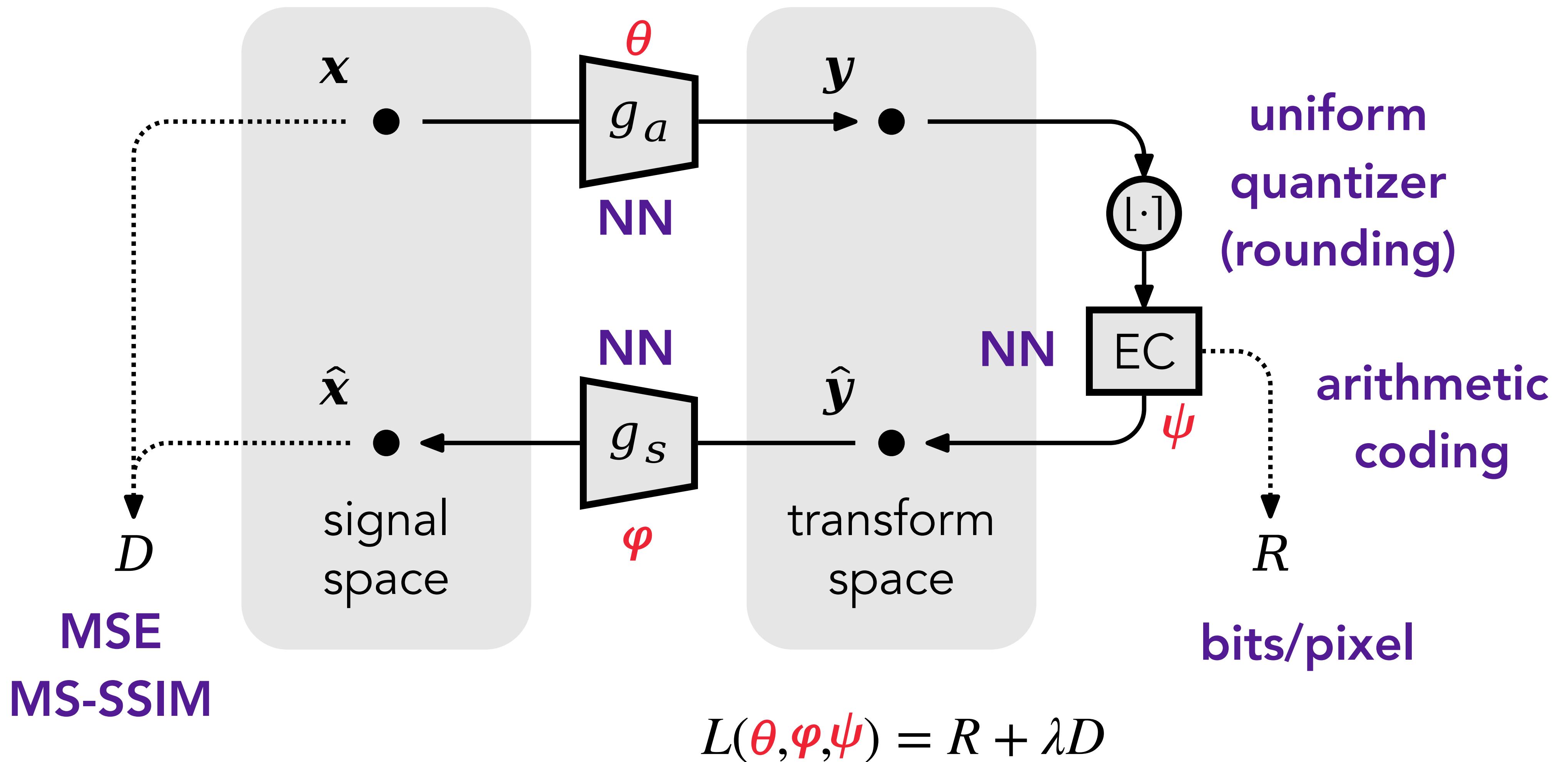
Nonlinear Transform Coding (NTC)



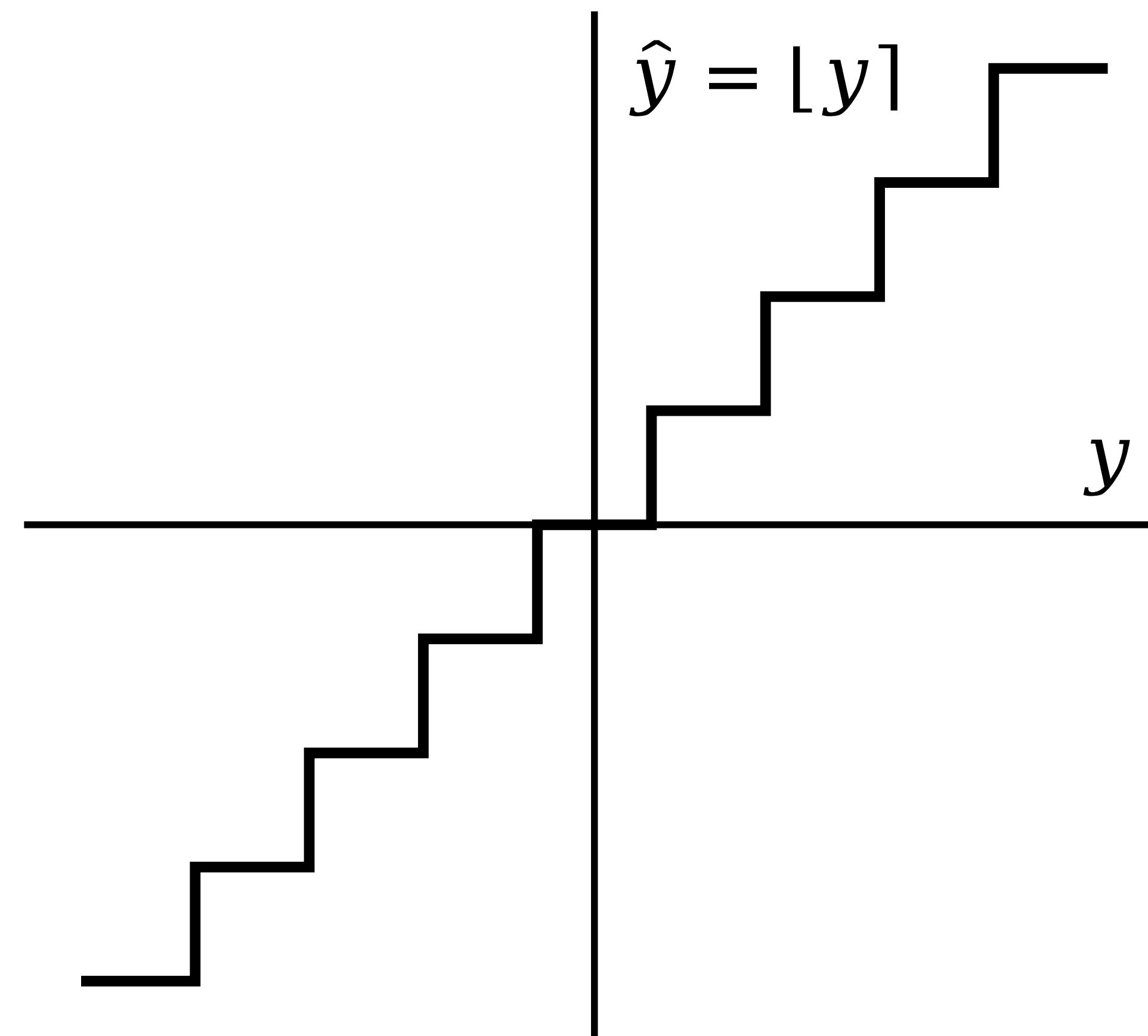
Nonlinear Transform Coding (NTC)



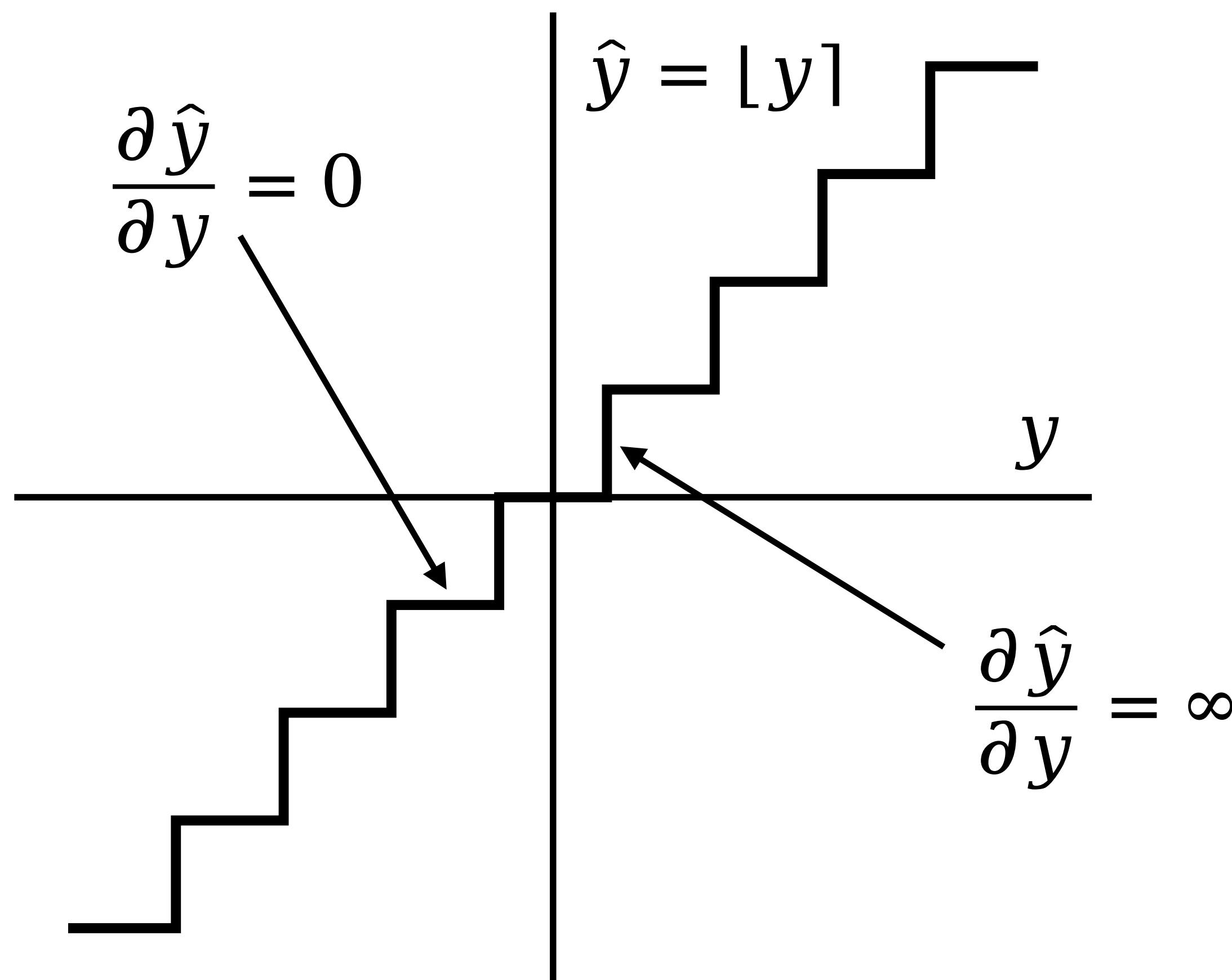
Nonlinear Transform Coding (NTC)



Gradient is zero *almost everywhere*



Gradient is zero *almost everywhere*

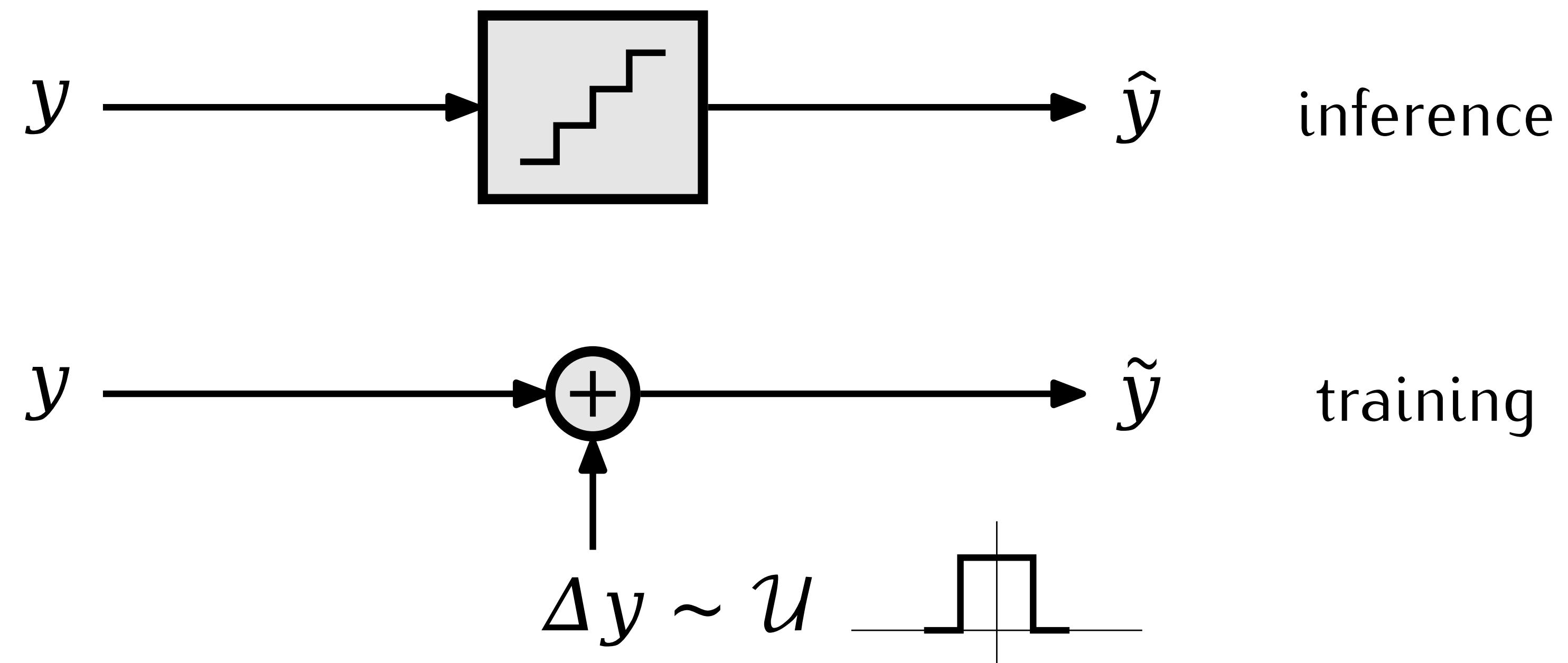


Proxy rate-distortion loss

Replace **rounding** with additive uniform noise.

Proxy rate-distortion loss

Replace **rounding** with additive uniform noise.

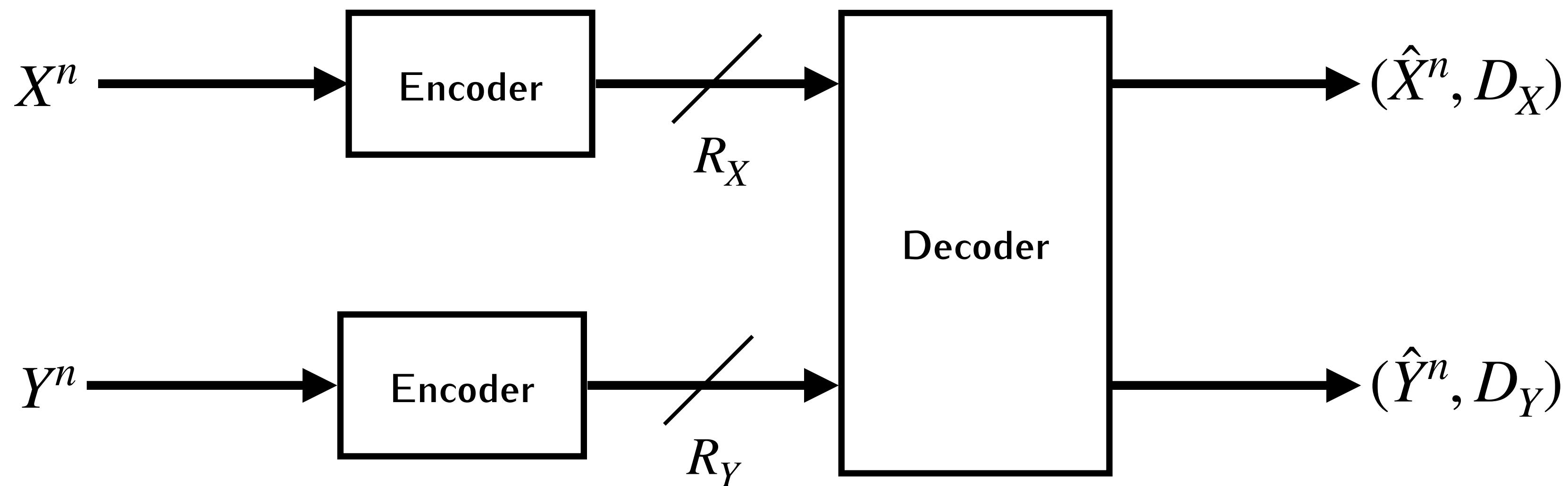


Part II.A

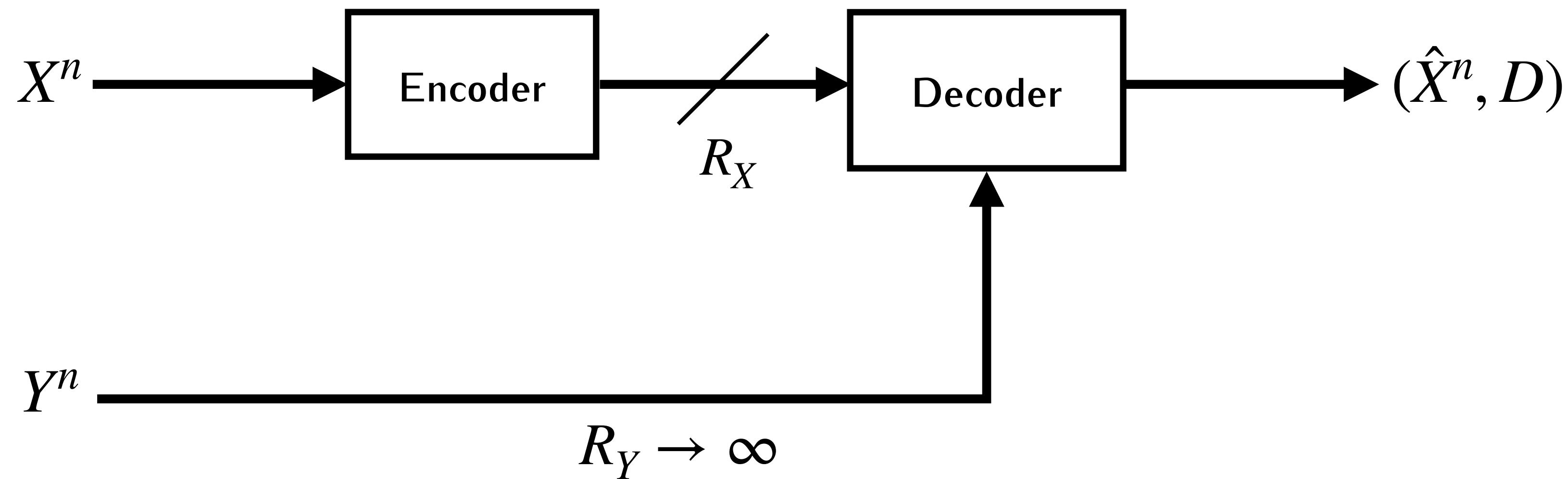
Learning-Based Distributed Data Compression

Distributed compression with 2 sources

Distributed compression with 2 sources

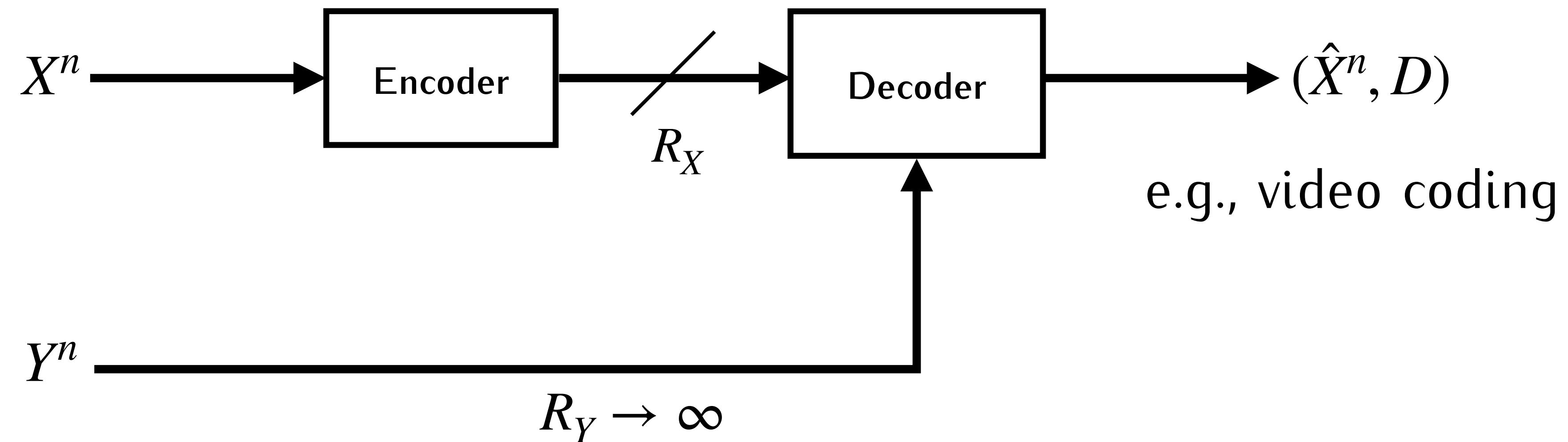


Special case of distributed compression: rate-distortion with (decoder-only) side information



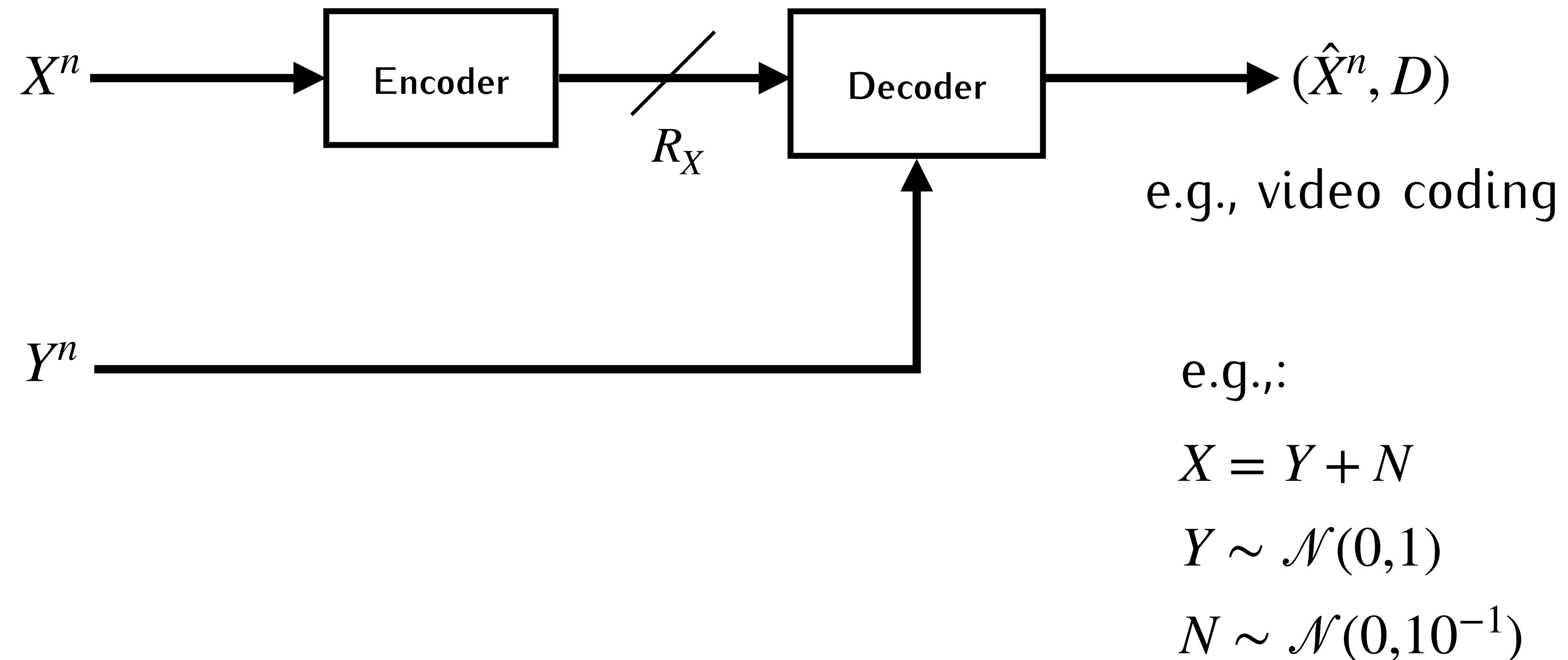
Special case of distributed compression: rate-distortion with (decoder-only) side information

Also known as Wyner-Ziv setup in information theory.

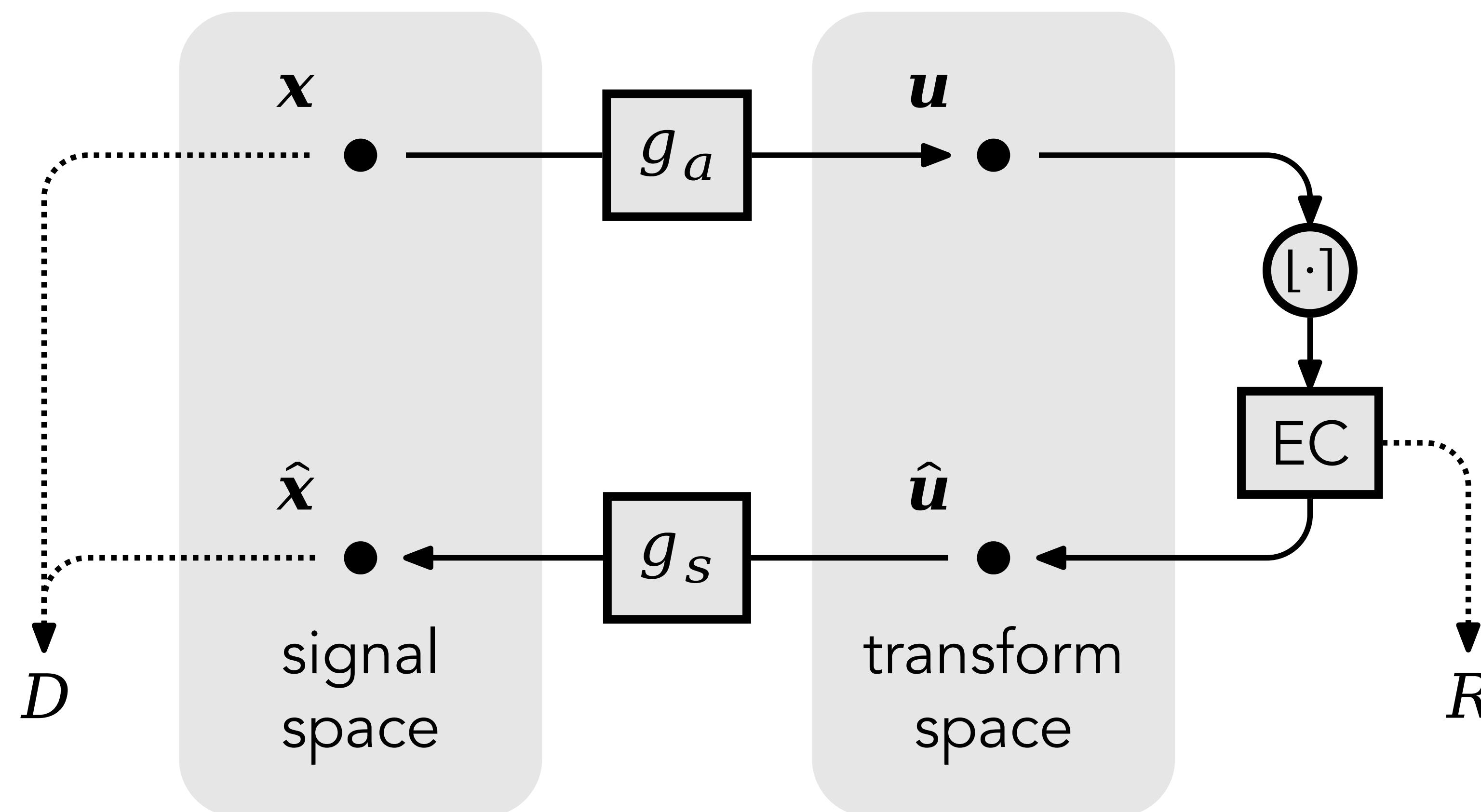


Special case of distributed compression: rate-distortion with (decoder-only) side information

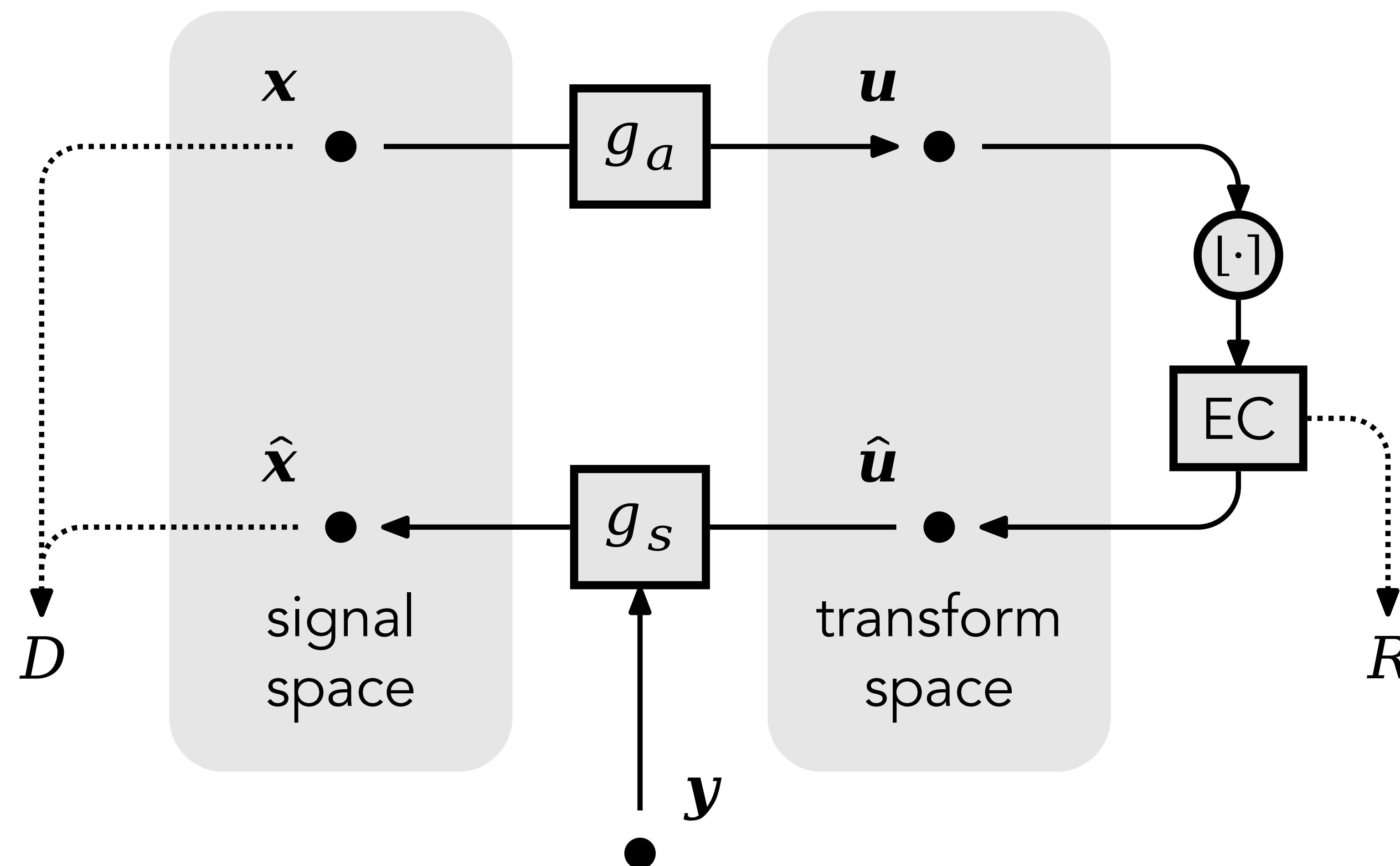
Also known as Wyner-Ziv setup in information theory.



With learned compression, just give y to decoder?

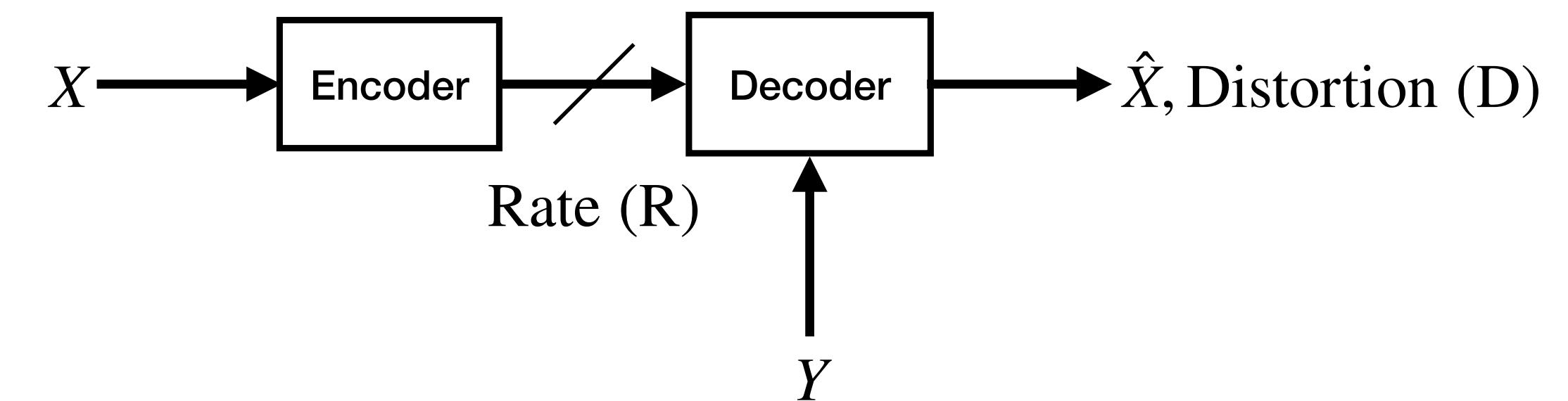


With learned compression, just give y to decoder?



Nope! NTC doesn't work.

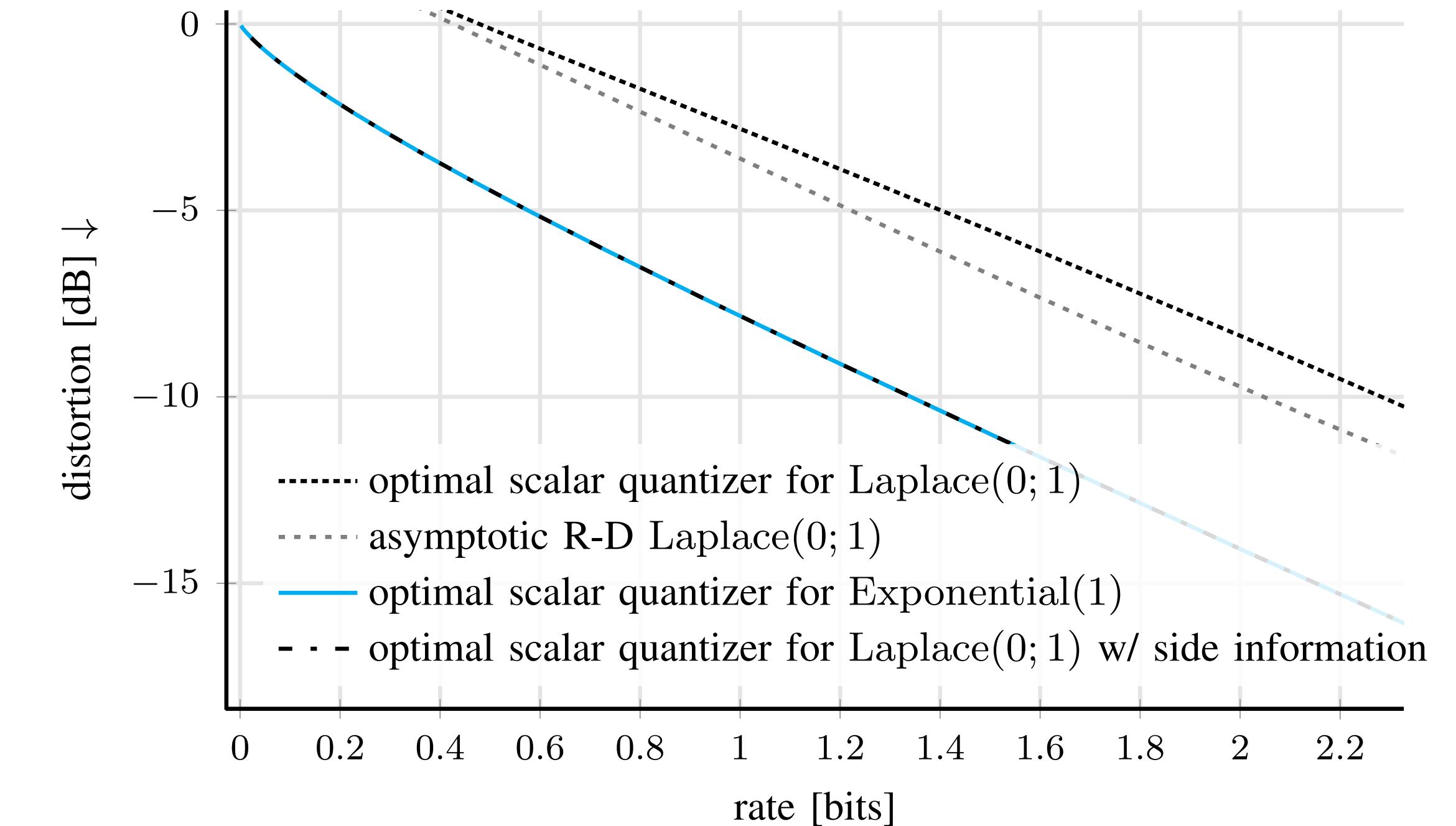
Nope! NTC doesn't work.



$$X \sim \text{Laplace}(0,1)$$

$$Y = \text{sgn}(X)$$

Nope! NTC doesn't work.

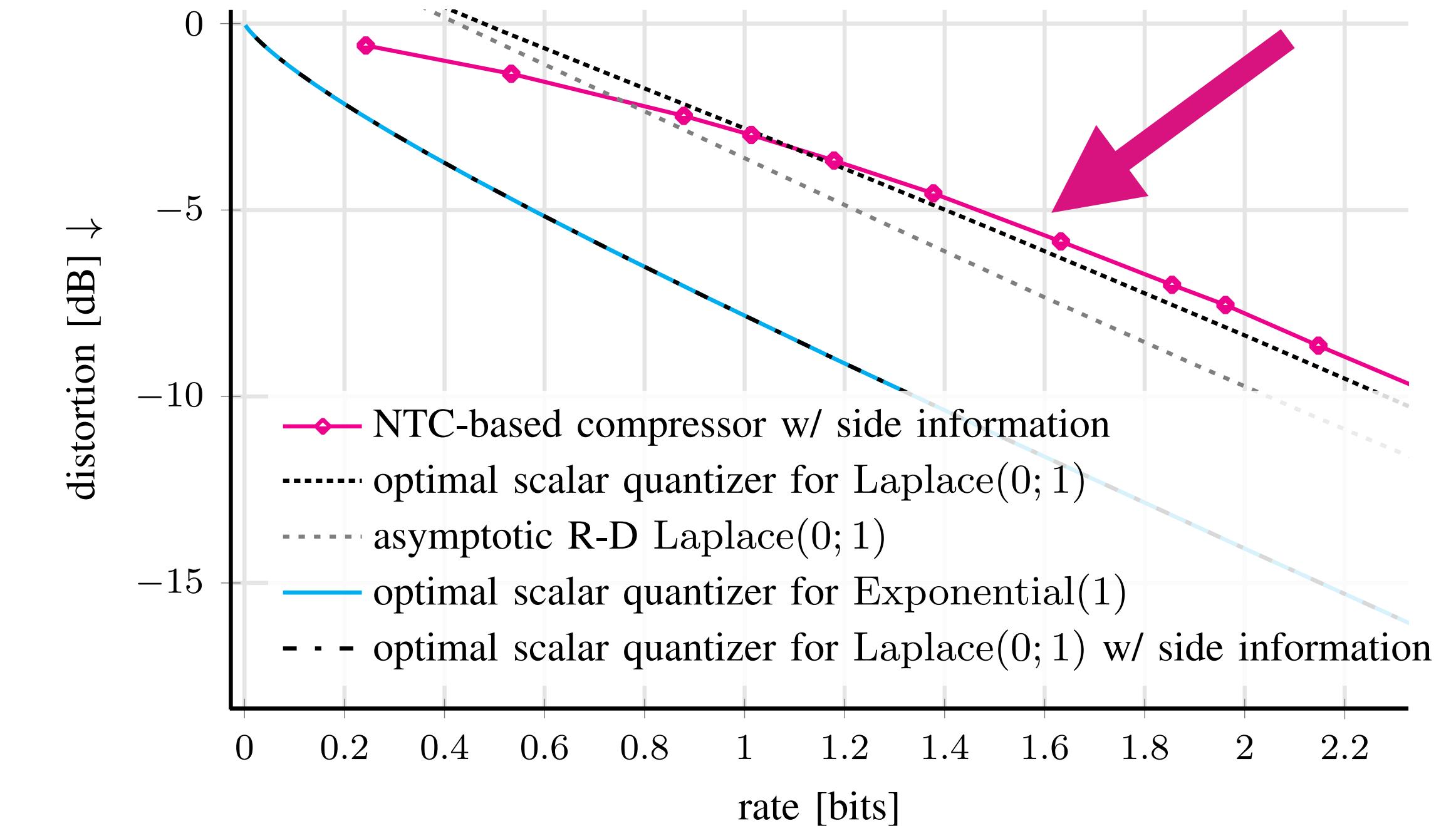


$$X \sim \text{Laplace}(0, 1)$$

$$Y = \text{sgn}(X)$$

Nope! NTC doesn't work.

- NTC compressor just barely performs better than point-to-point (when y is not present).

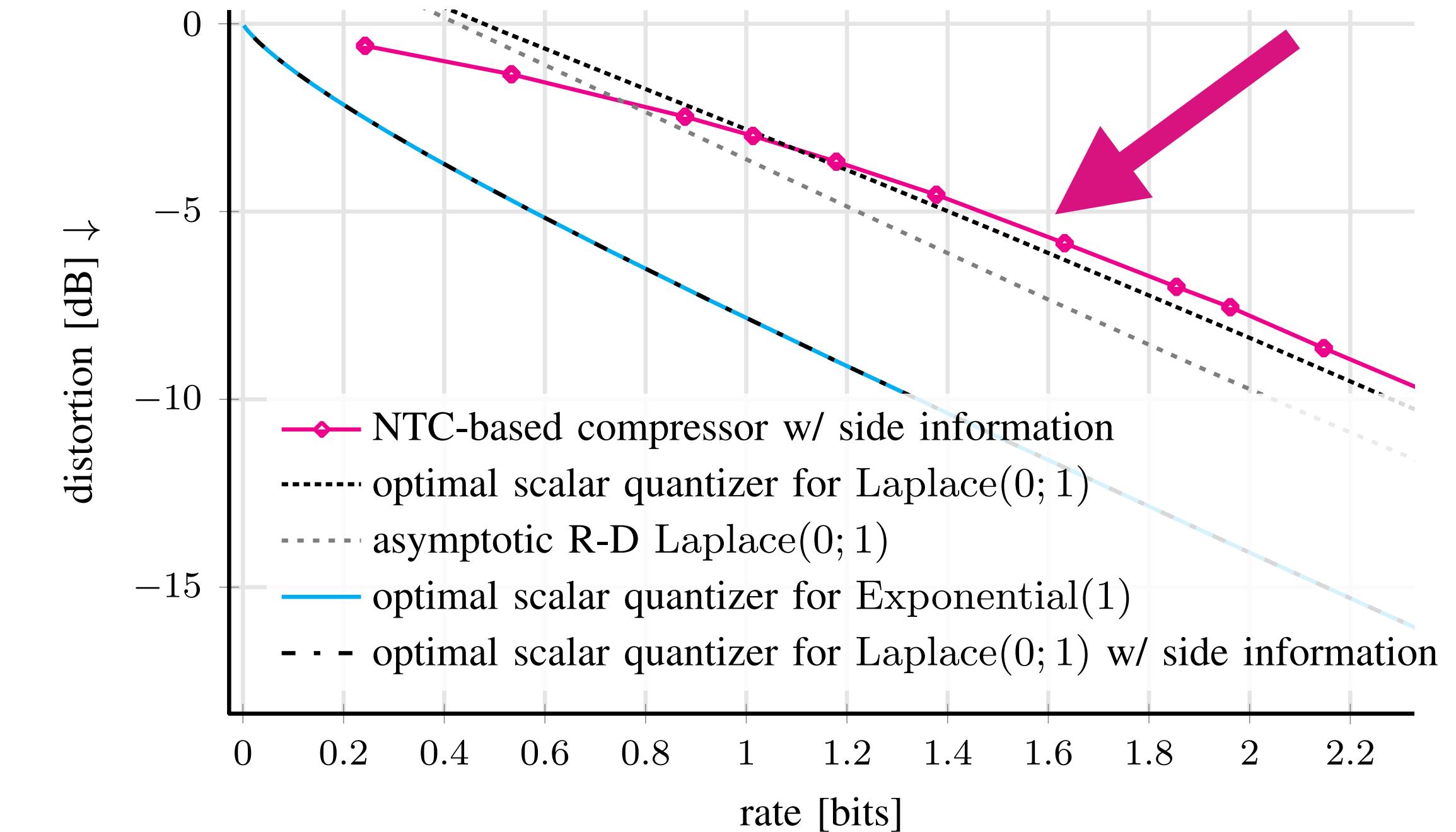


$$X \sim \text{Laplace}(0,1)$$

$$Y = \text{sgn}(X)$$

Nope! NTC doesn't work.

- NTC compressor just barely performs better than point-to-point (when y is not present).
- Some dumb mistake 🤡 ?
 - NTC-based compressors have a **learning bias towards *smooth functions***.

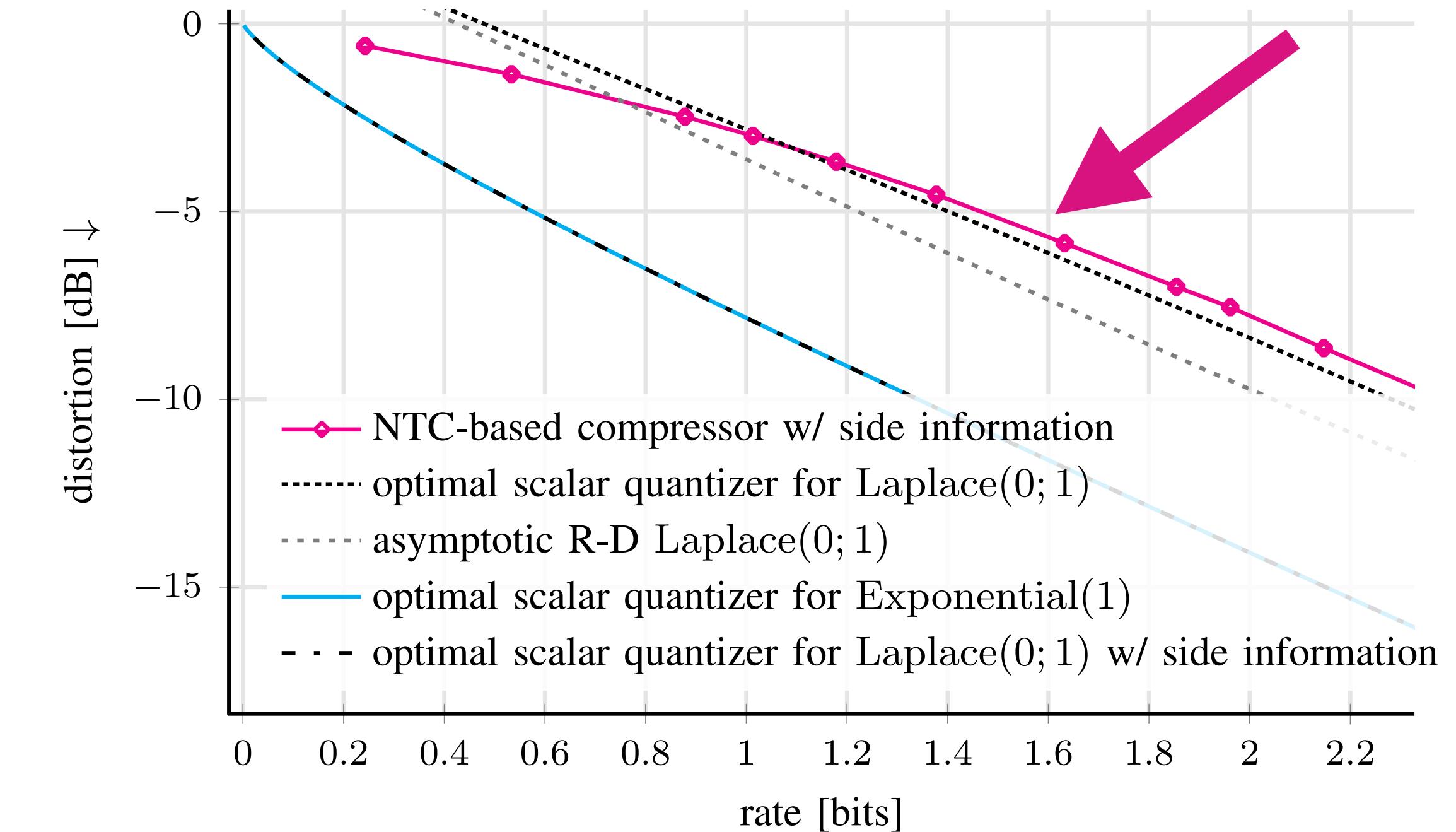


$$X \sim \text{Laplace}(0, 1)$$

$$Y = \text{sgn}(X)$$

Nope! NTC doesn't work.

- NTC compressor just barely performs better than point-to-point (when y is not present).
- Some dumb mistake 🤡 ?
 - NTC-based compressors have a **learning bias towards *smooth functions*.**
 - \Rightarrow cannot recover **many-to-one maps at the encoder.**

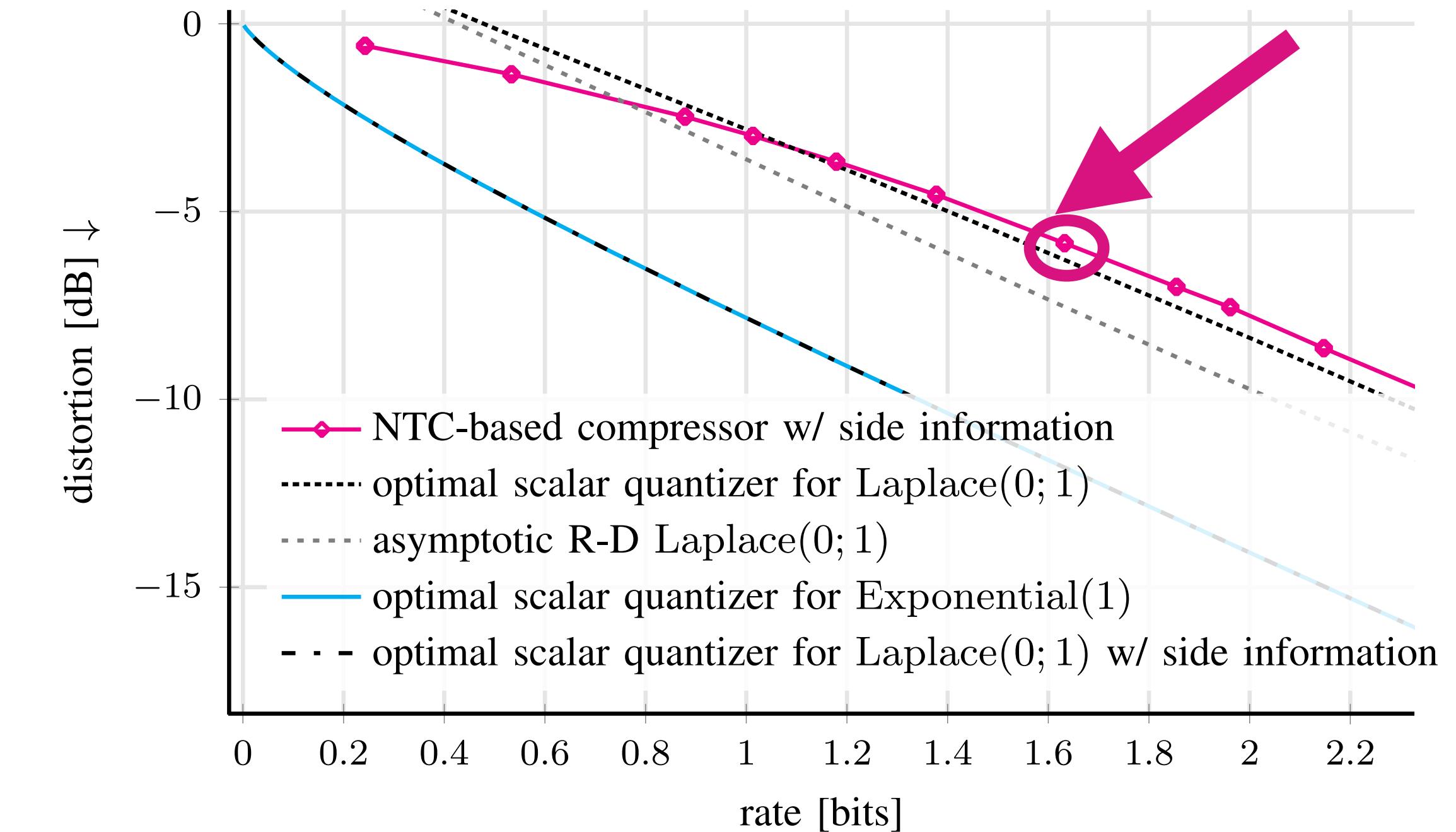


$$X \sim \text{Laplace}(0, 1)$$

$$Y = \text{sgn}(X)$$

Nope! NTC doesn't work.

- NTC compressor just barely performs better than point-to-point (when y is not present).
- Some dumb mistake 🤡 ?
 - NTC-based compressors have a **learning bias towards *smooth functions*.**
 - \Rightarrow cannot recover **many-to-one maps at the encoder.**

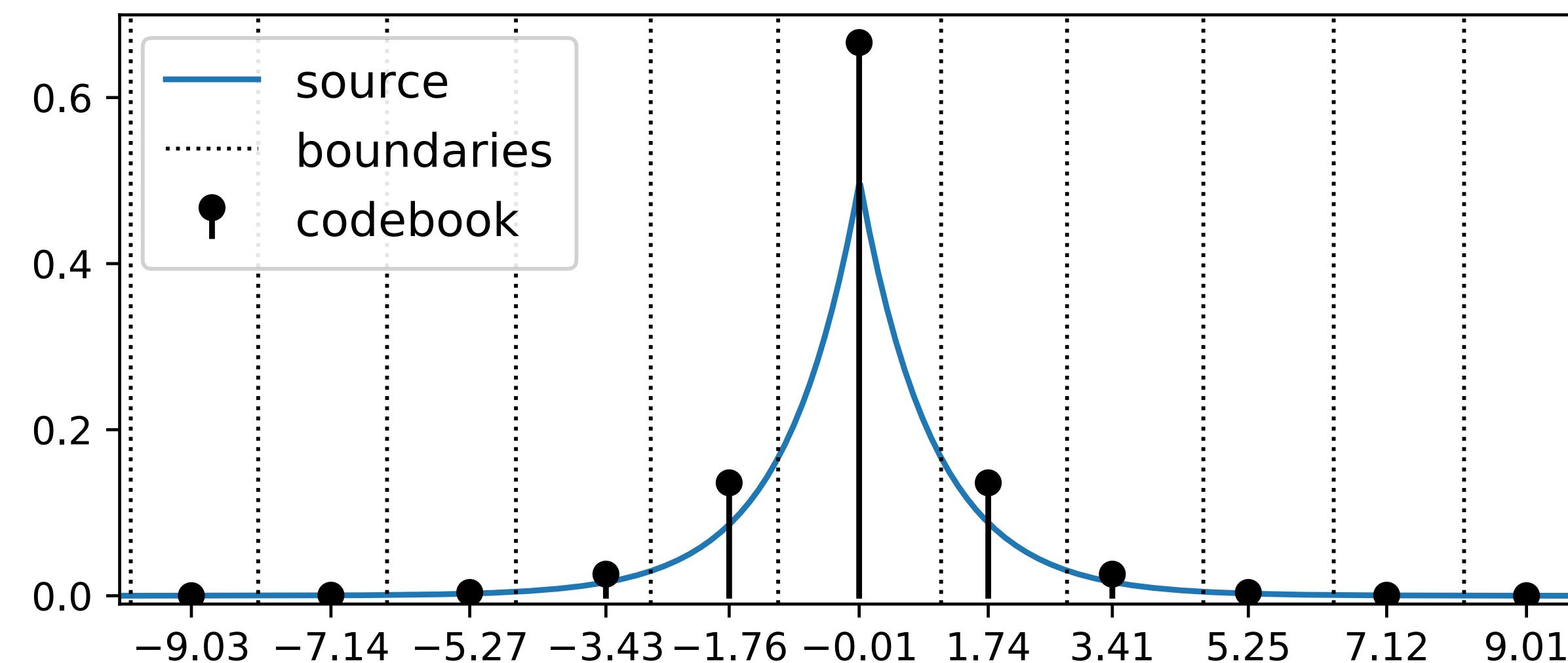


$$X \sim \text{Laplace}(0, 1)$$

$$Y = \text{sgn}(X)$$

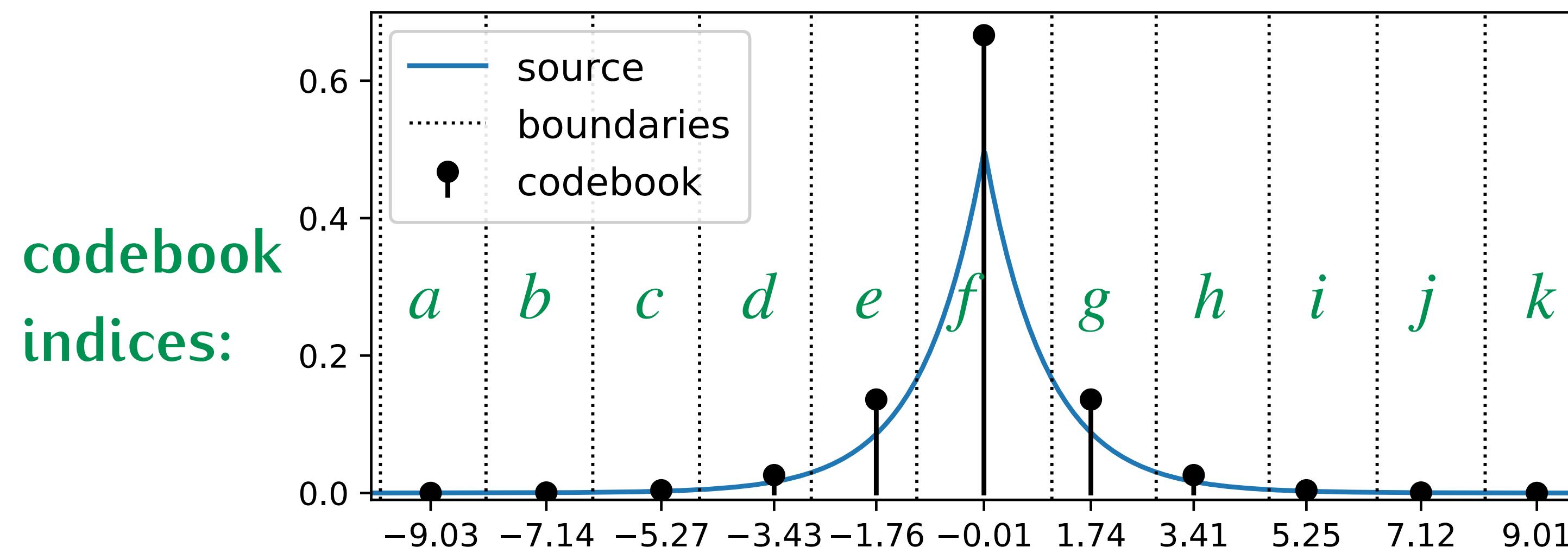
What does NTC learn?

What does NTC learn?



$$X \sim \text{Laplace}(0, 1)$$
$$Y = \text{sgn}(X)$$

What does NTC learn?

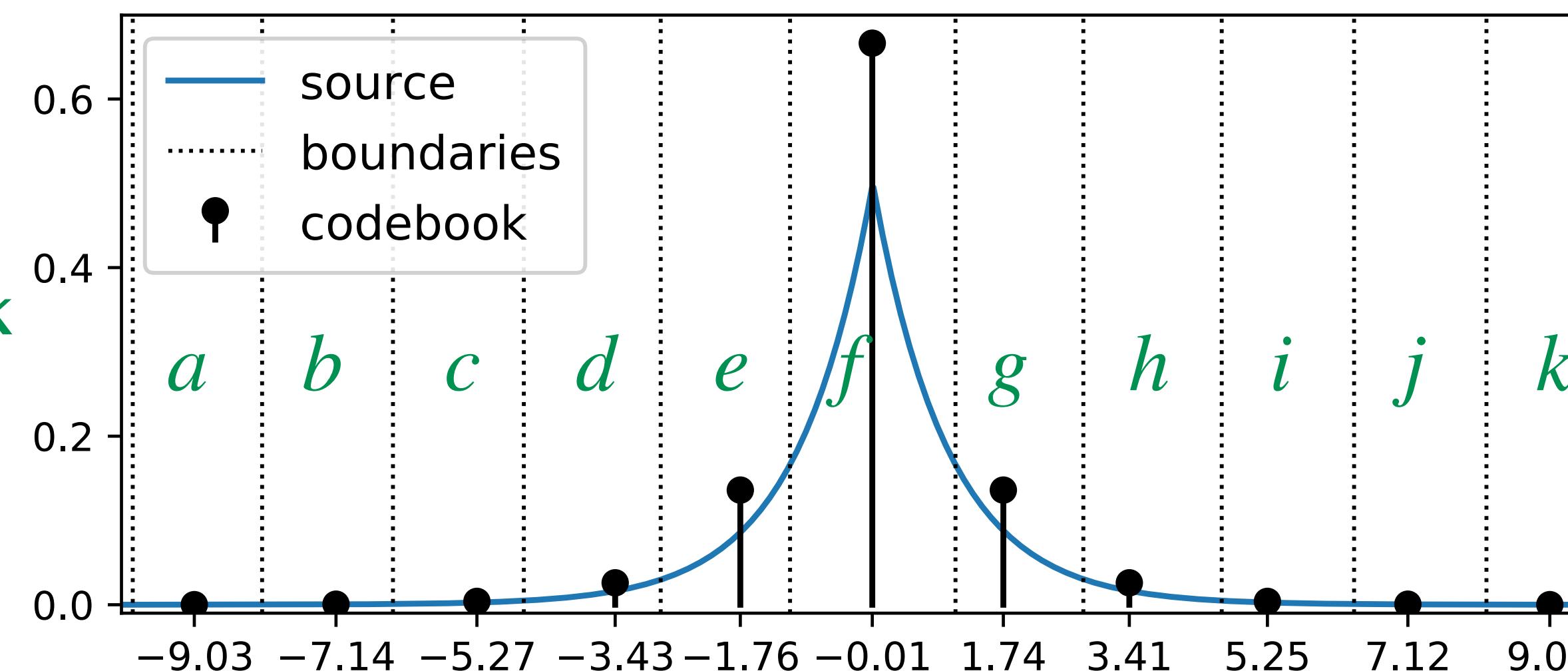


$$X \sim \text{Laplace}(0,1)$$
$$Y = \text{sgn}(X)$$

NTC assigns *unique index* for each interval.

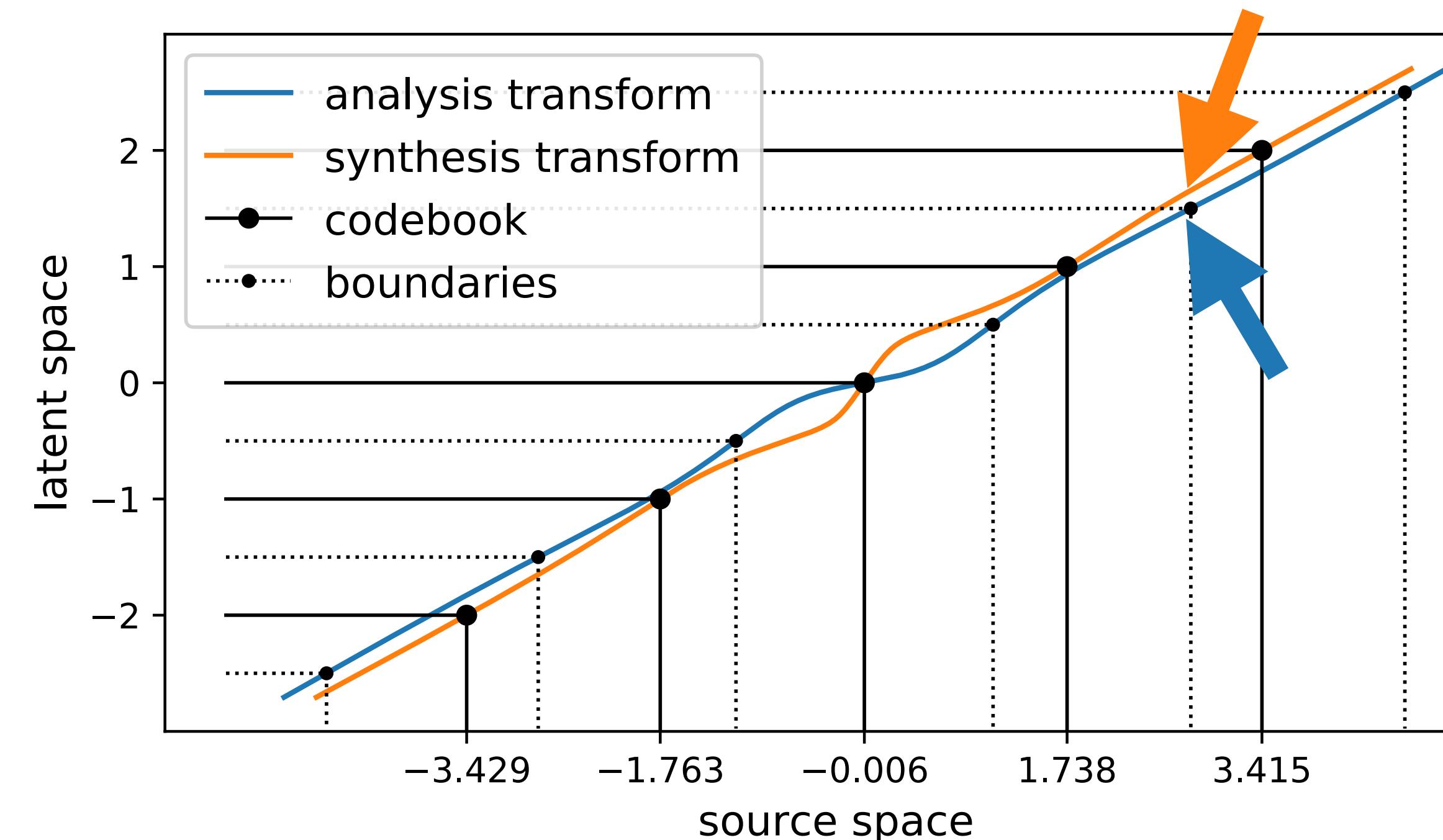
What does NTC learn?

codebook
indices:



$$X \sim \text{Laplace}(0,1)$$
$$Y = \text{sgn}(X)$$

NTC assigns *unique index* for each interval.

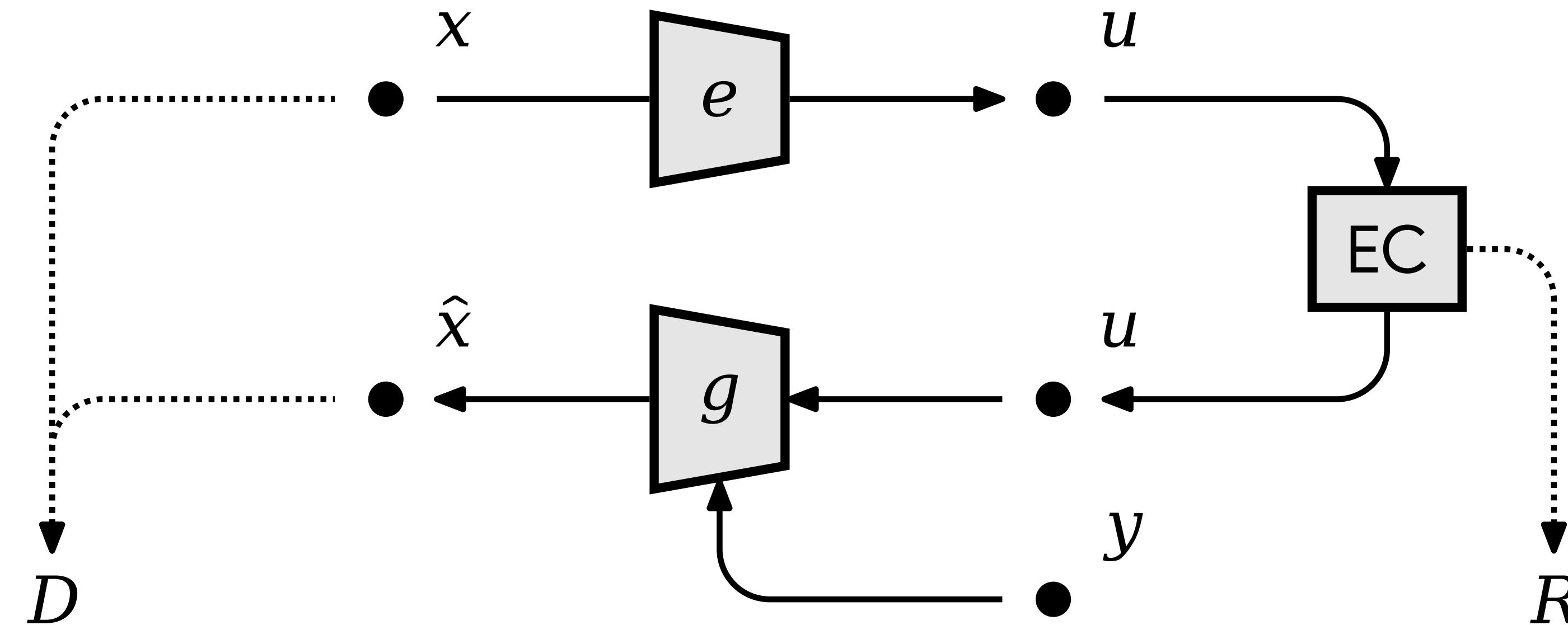


$$\text{encoder: } \mathbb{R} \mapsto \mathbb{Z}$$

$$\text{decoder: } \mathbb{Z} \mapsto \mathbb{R}$$

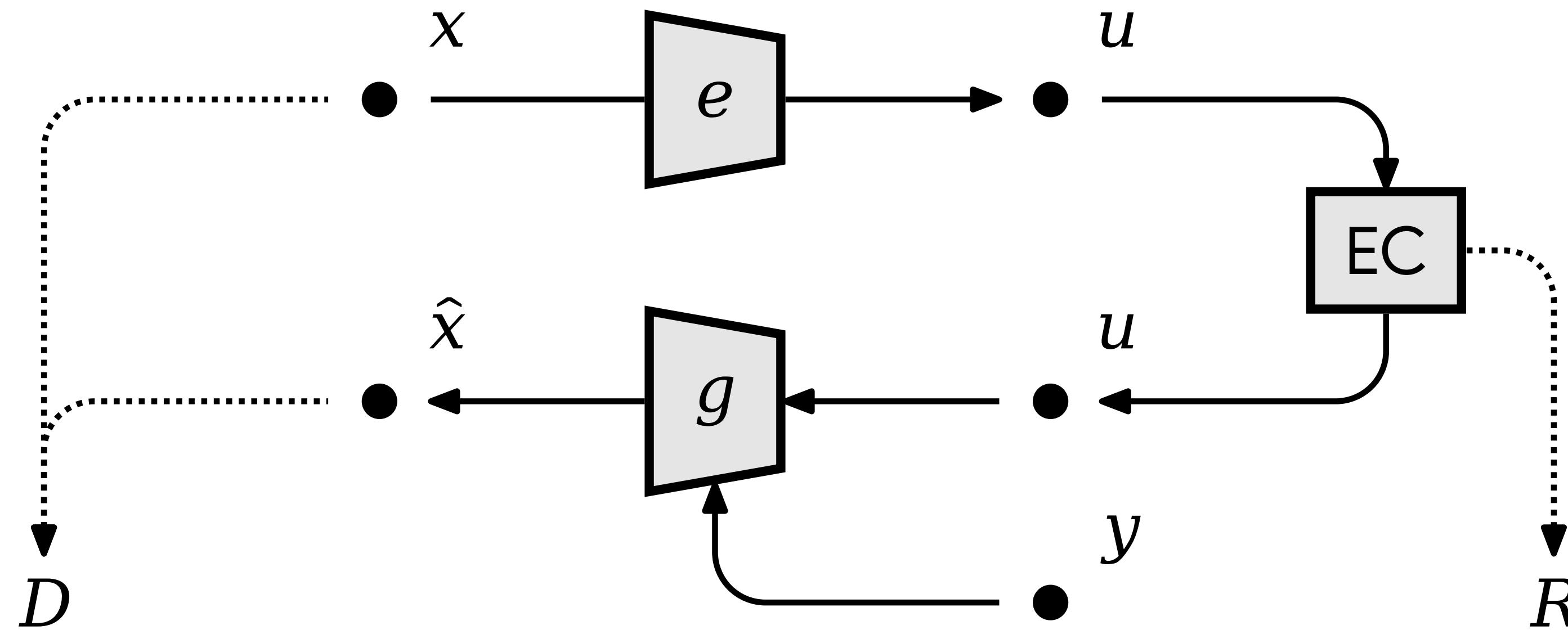
NTC recovers *smooth* nonlinear transforms.

How to overcome the smoothness learning bias?



- Motivation: encoder can implement arbitrary maps?

How to overcome the smoothness learning bias?



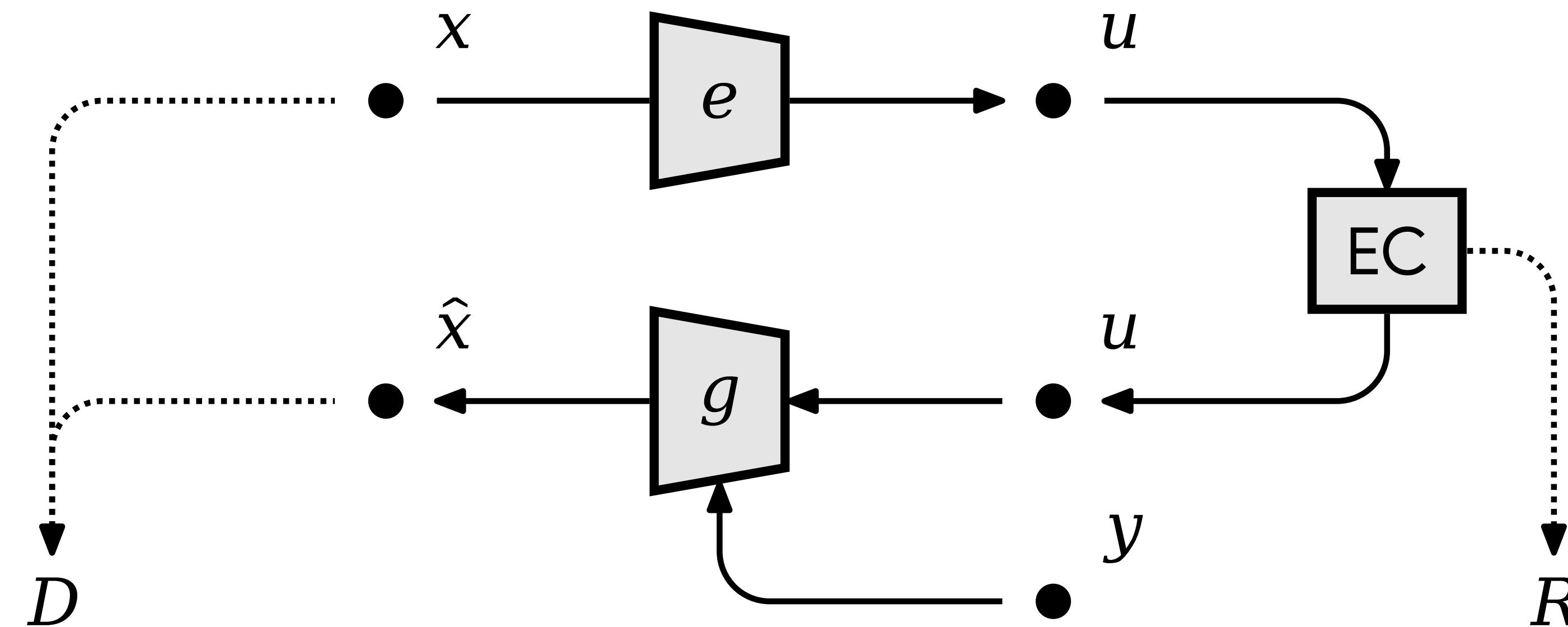
- Motivation: encoder can implement arbitrary maps?
- Let the encoder output indicator (one-hot) functions, rather than vectors rounded to integers.

How to overcome the smoothness learning bias?



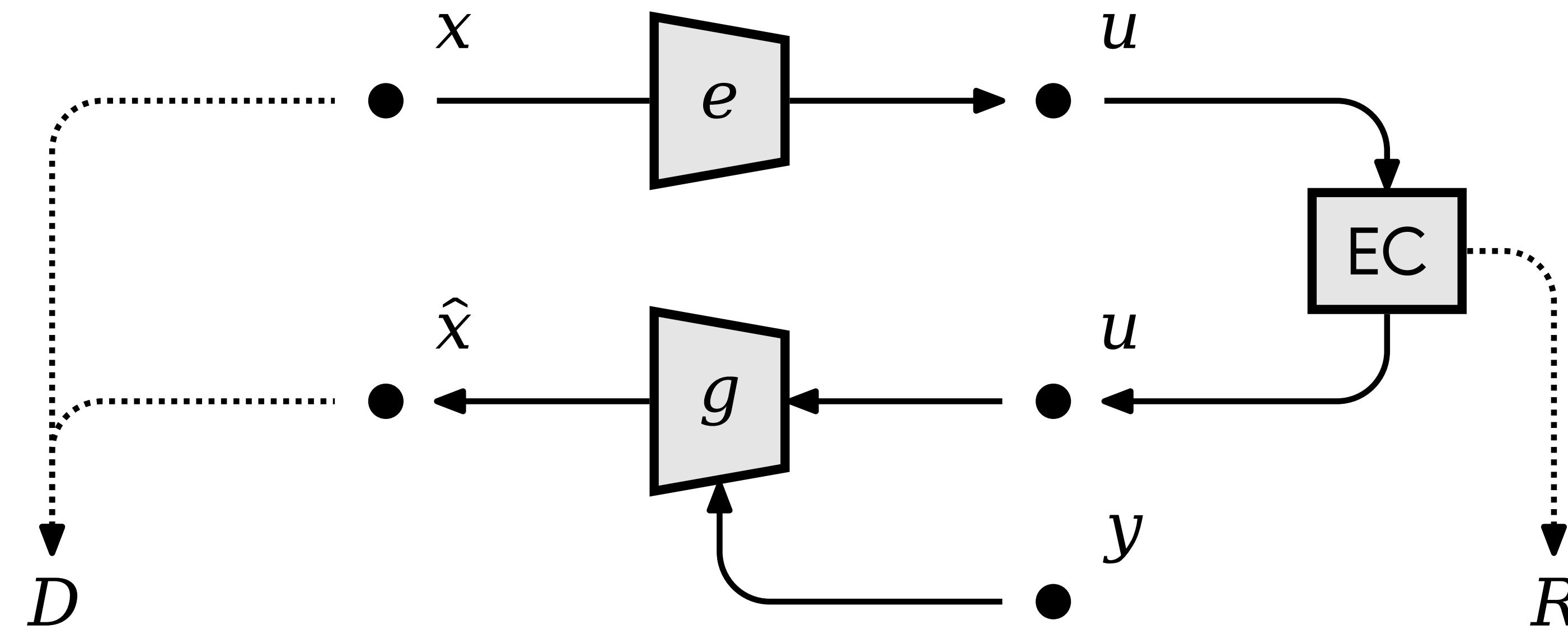
- Motivation: encoder can implement arbitrary maps?
- Let the encoder output indicator (one-hot) functions, rather than vectors rounded to integers.
 - This gives the encoder the same structure as a classification network.
 - Encoder be $e_{\theta} : \mathbb{R} \mapsto \{a, b, c, d, \dots\}$, instead of $e_{\theta} : \mathbb{R} \mapsto \mathbb{Z}$ as in NTC.

Replacing NTC with something less constrained



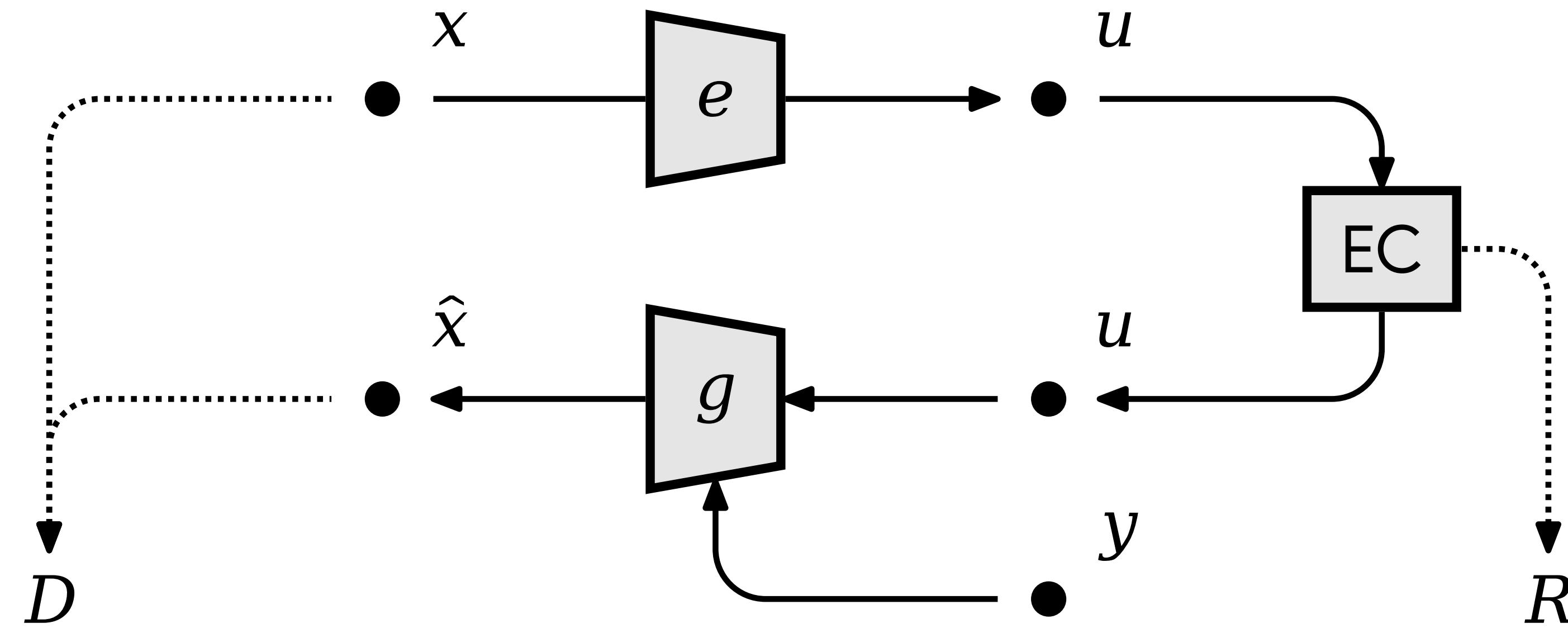
- Let encoder $e_{\theta}(x)$ output “logits” $(\alpha_1, \alpha_2, \alpha_3, \dots)$.

Replacing NTC with something less constrained



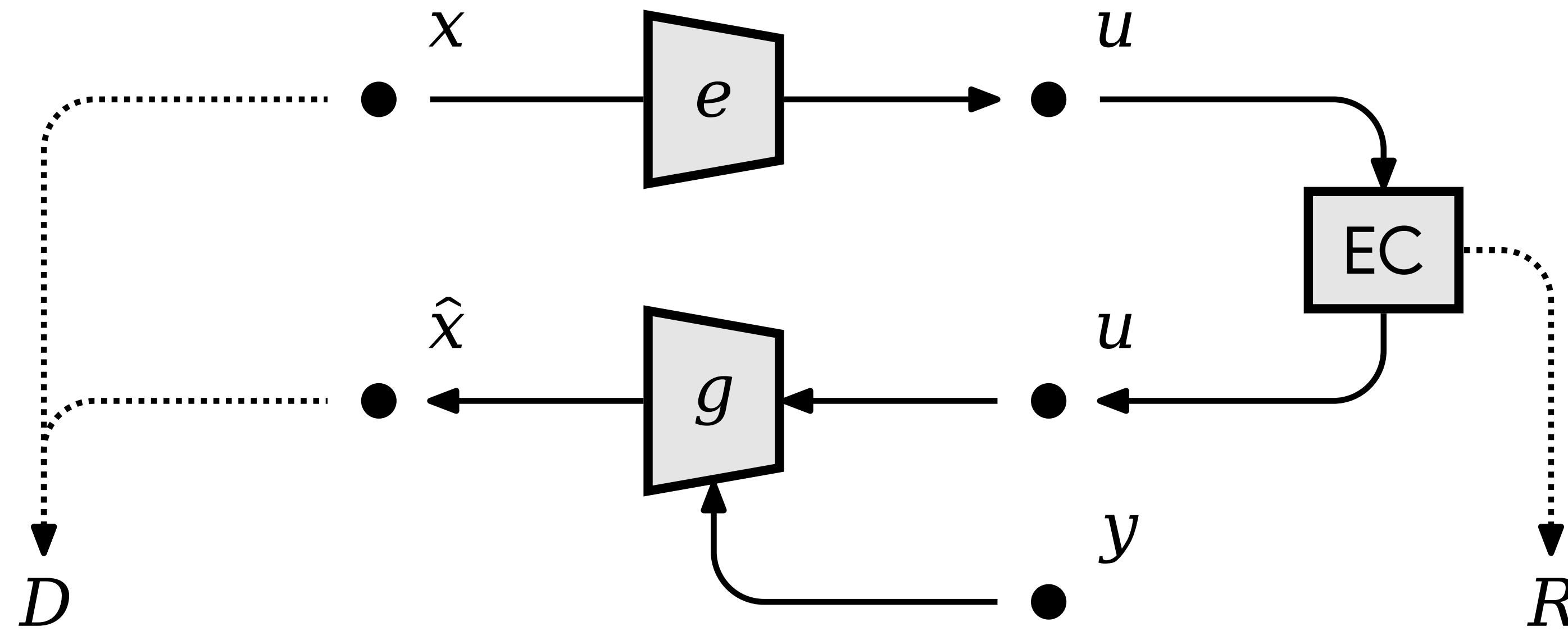
- Let encoder $e_{\theta}(x)$ output “logits” $(\alpha_1, \alpha_2, \alpha_3, \dots)$.
- Choose quantization index as $u = \text{argmax}_i \alpha_i$.

Replacing NTC with something less constrained



- Let encoder $e_{\theta}(x)$ output “logits” $(\alpha_1, \alpha_2, \alpha_3, \dots)$.
- Choose quantization index as $u = \text{argmax}_i \alpha_i$.
- $x \mapsto \alpha_k$ can still be a smooth function although $x \mapsto u$ may not be!

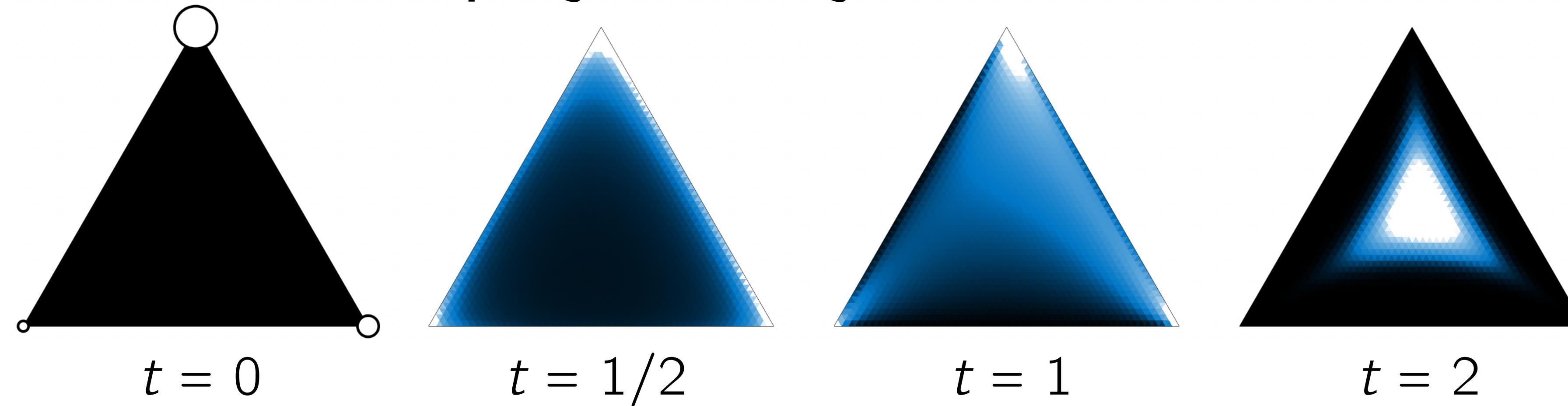
Replacing NTC with something less constrained



- Let encoder $e_{\theta}(x)$ output “logits” $(\alpha_1, \alpha_2, \alpha_3, \dots)$.
not differentiable
- Choose quantization index as $u = \text{argmax}_i \alpha_i$.
- $x \mapsto \alpha_k$ can still be a smooth function although $x \mapsto u$ may not be!

Gumbel-Softmax trick

Allows **differentiable sampling** from categorical-like distribution.



Rather than sampling an index u , we sample a vector u :

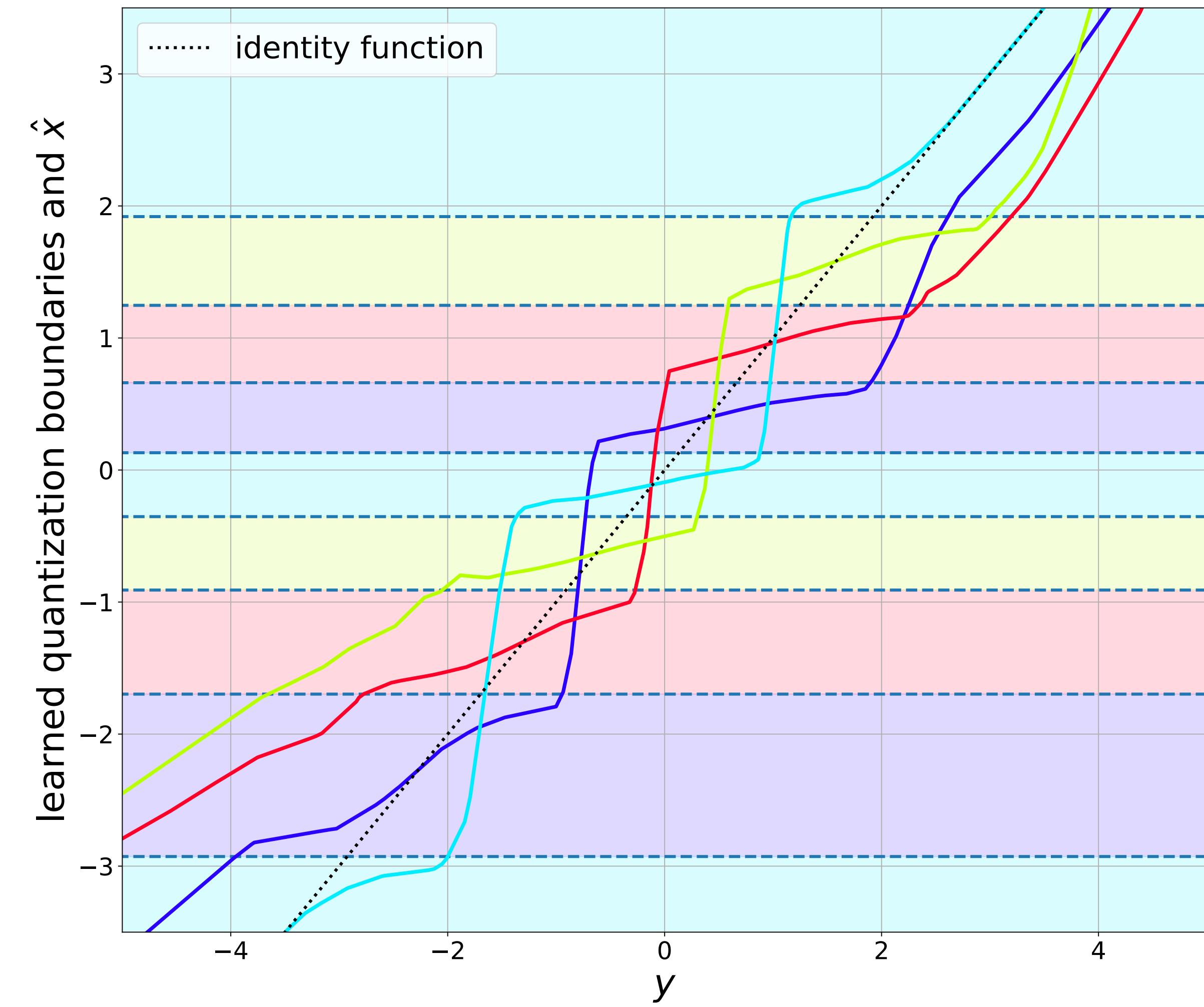
$$u_k = \frac{\exp((\alpha_k + G_k)/t)}{\sum_i \exp_i((\alpha_i + G_i)/t)}$$

As $t \rightarrow 0^+$, we approach $\arg \max$.

softmax is differentiable!!

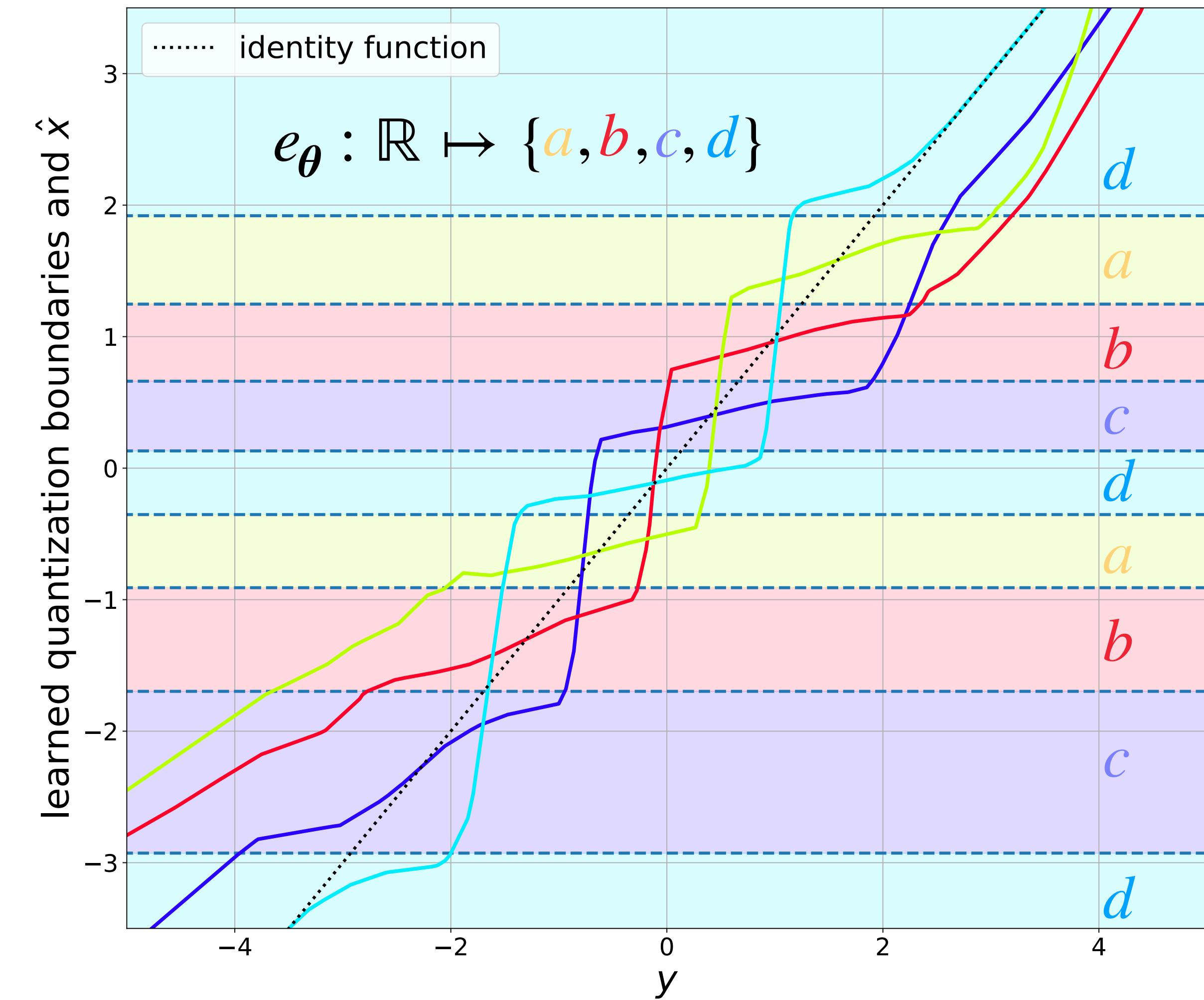
Learned compressor recovers “binning” (grouping)

$$\begin{aligned}X &= Y + N \\Y &\sim \mathcal{N}(0,1) \\N &\sim \mathcal{N}(0,10^{-1})\end{aligned}$$



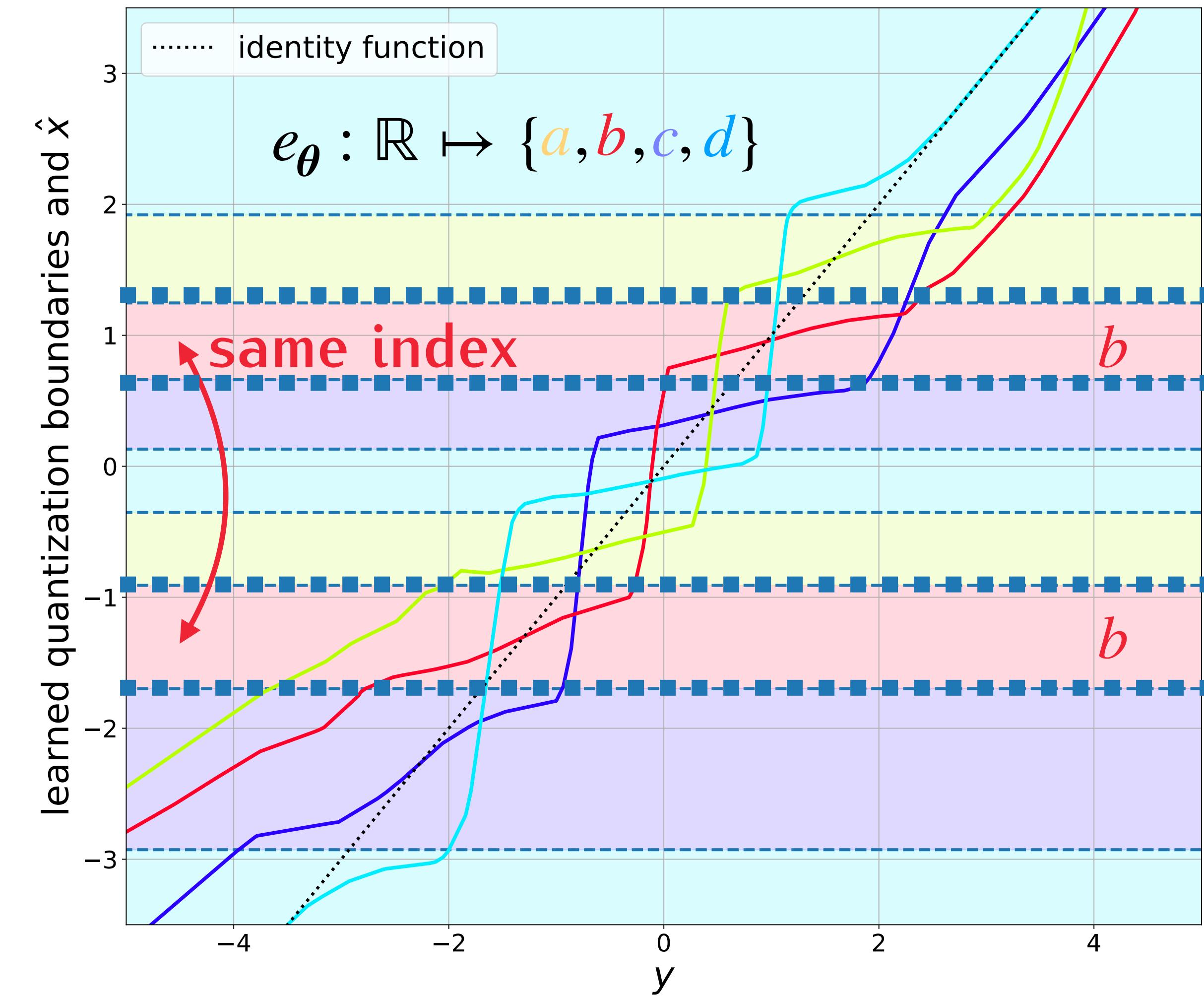
Learned compressor recovers “binning” (grouping)

$$\begin{aligned}X &= Y + N \\Y &\sim \mathcal{N}(0,1) \\N &\sim \mathcal{N}(0,10^{-1})\end{aligned}$$



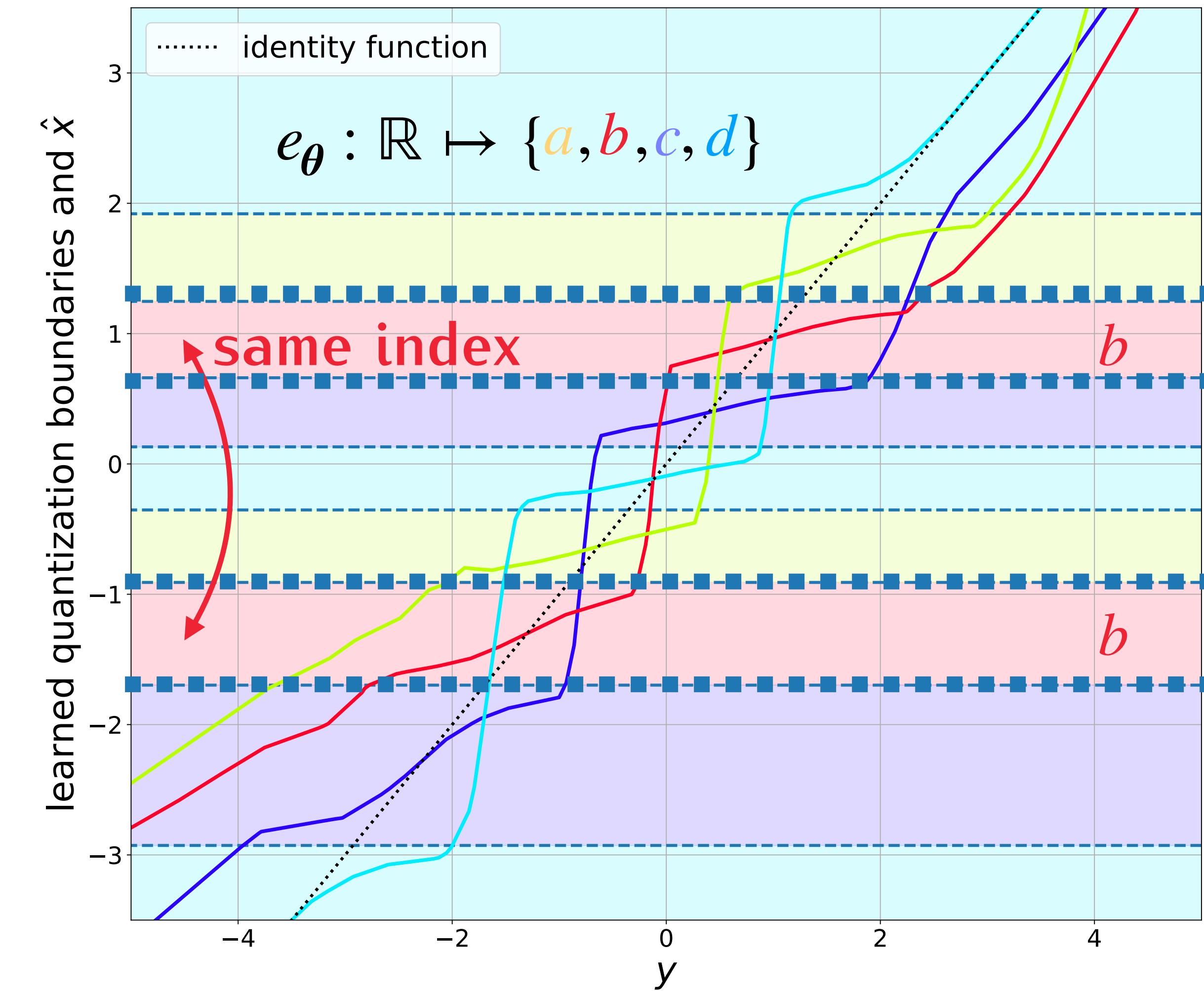
Learned compressor recovers “binning” (grouping)

$$\begin{aligned}X &= Y + N \\Y &\sim \mathcal{N}(0,1) \\N &\sim \mathcal{N}(0,10^{-1})\end{aligned}$$



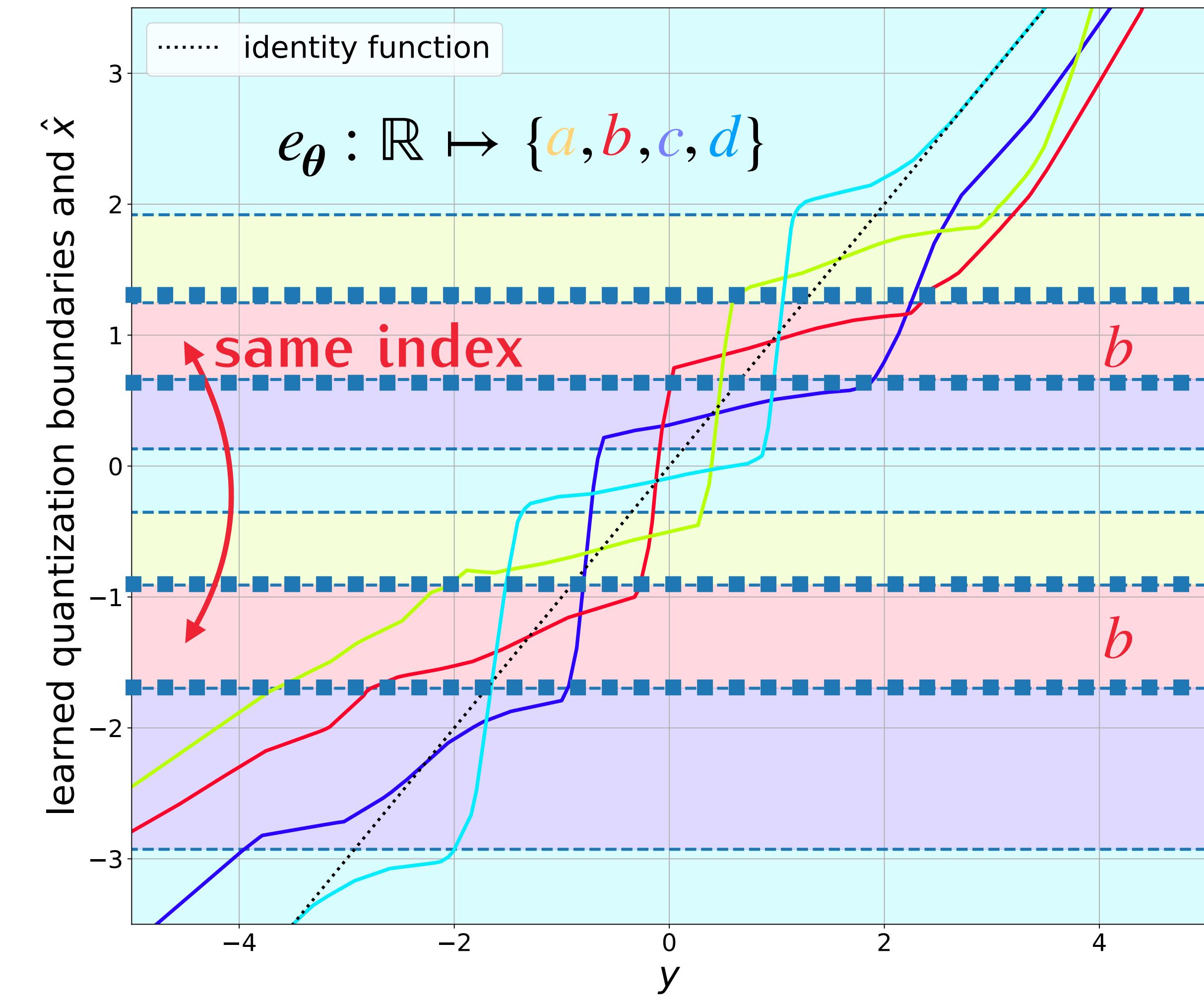
Learned compressor recovers “binning” (grouping)

“Binning” is widely used to prove bounds in distributed compression,



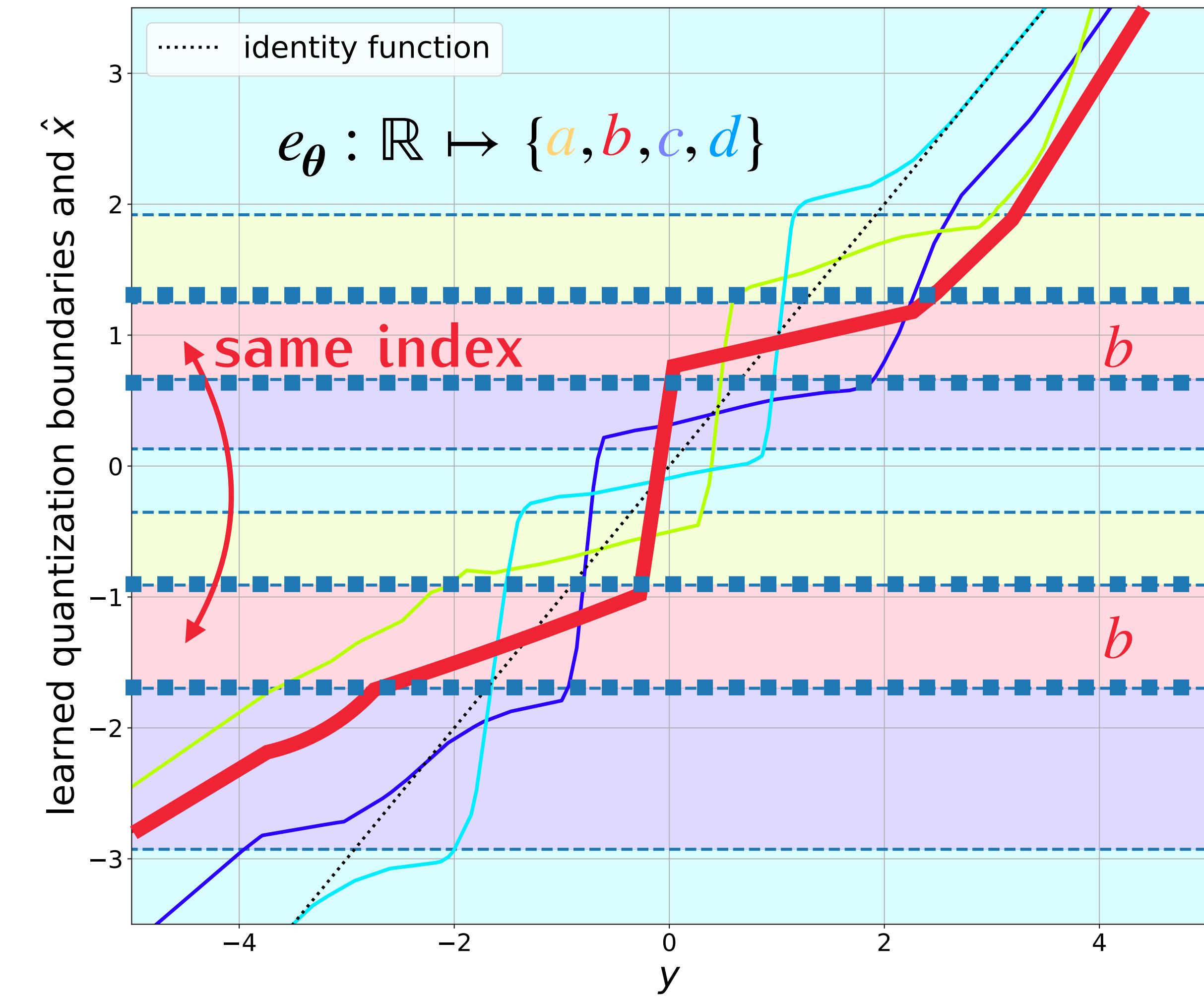
Learned compressor recovers “binning” (grouping)

“Binning” is widely used to prove bounds in distributed compression, with some constructive attempts at implementation.



Learned compressor recovers “binning” (grouping)

“Binning” is widely used to prove bounds in distributed compression, with some constructive attempts at implementation.



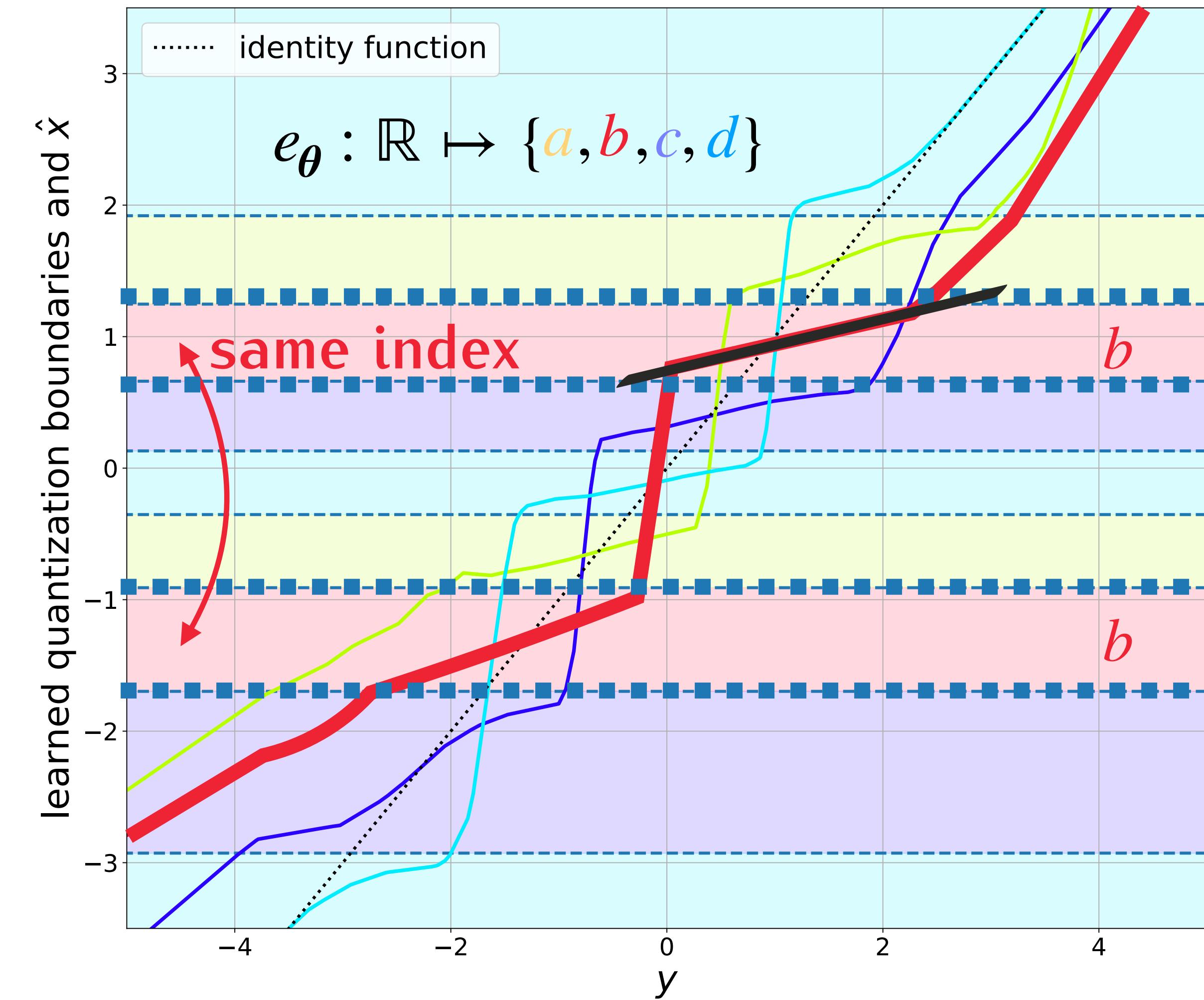
Ozyilkan, Ballé & Erkip (ISIT, 2023 & Neural Compression Workshop @ ICML'23 [oral])

Pradhan & Ramchandran (IEEE Trans. on Information Theory, 2003)

Learned compressor recovers “binning” (grouping)

“Binning” is widely used to prove bounds in distributed compression, with some constructive attempts at implementation.

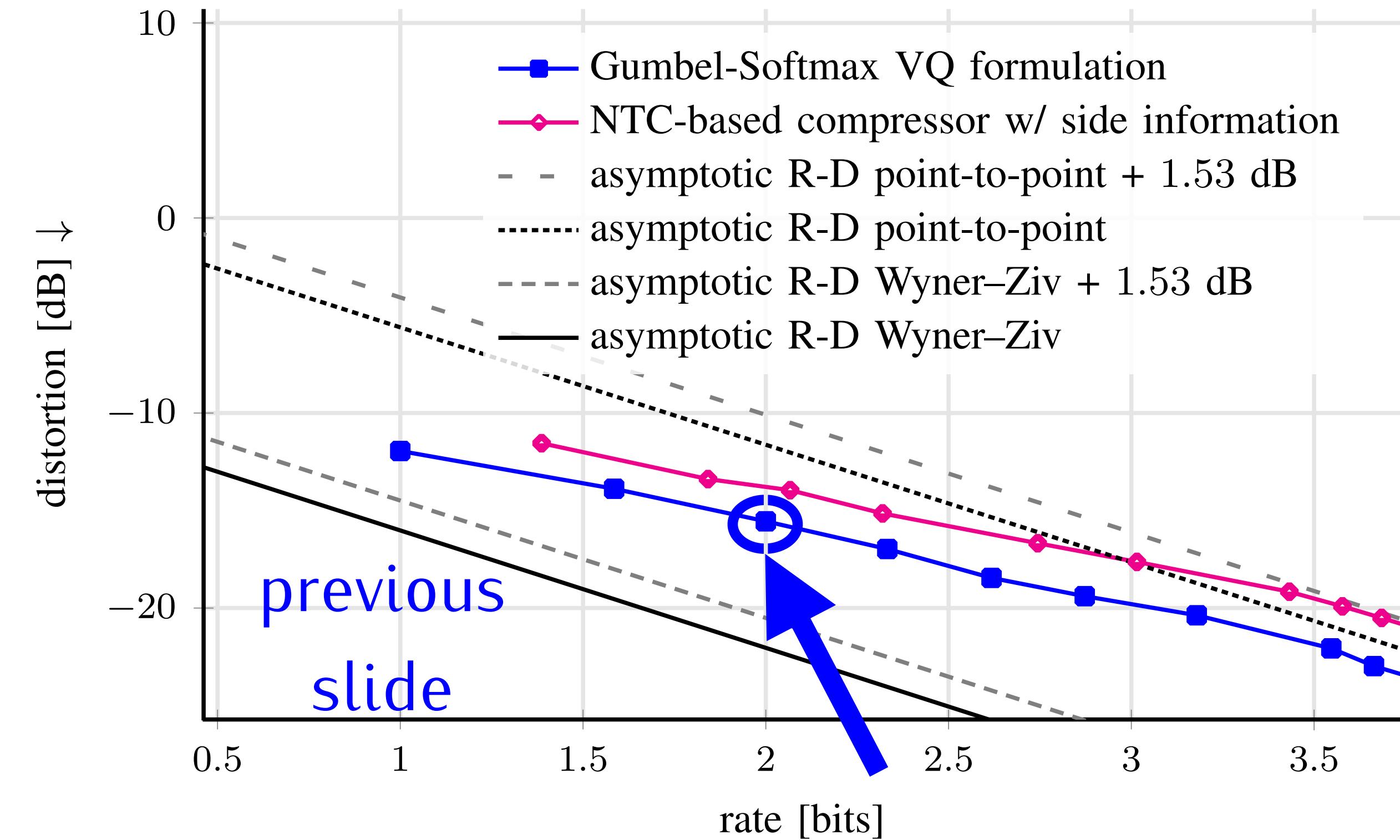
For X, Y Gaussian; the optimal decoder is **linear** given the quantization index.



Ozyilkan, Ballé & Erkip (ISIT, 2023 & Neural Compression Workshop @ ICML'23 [oral])

Pradhan & Ramchandran (IEEE Trans. on Information Theory, 2003)

Empirical results of Gumbel-Softmax



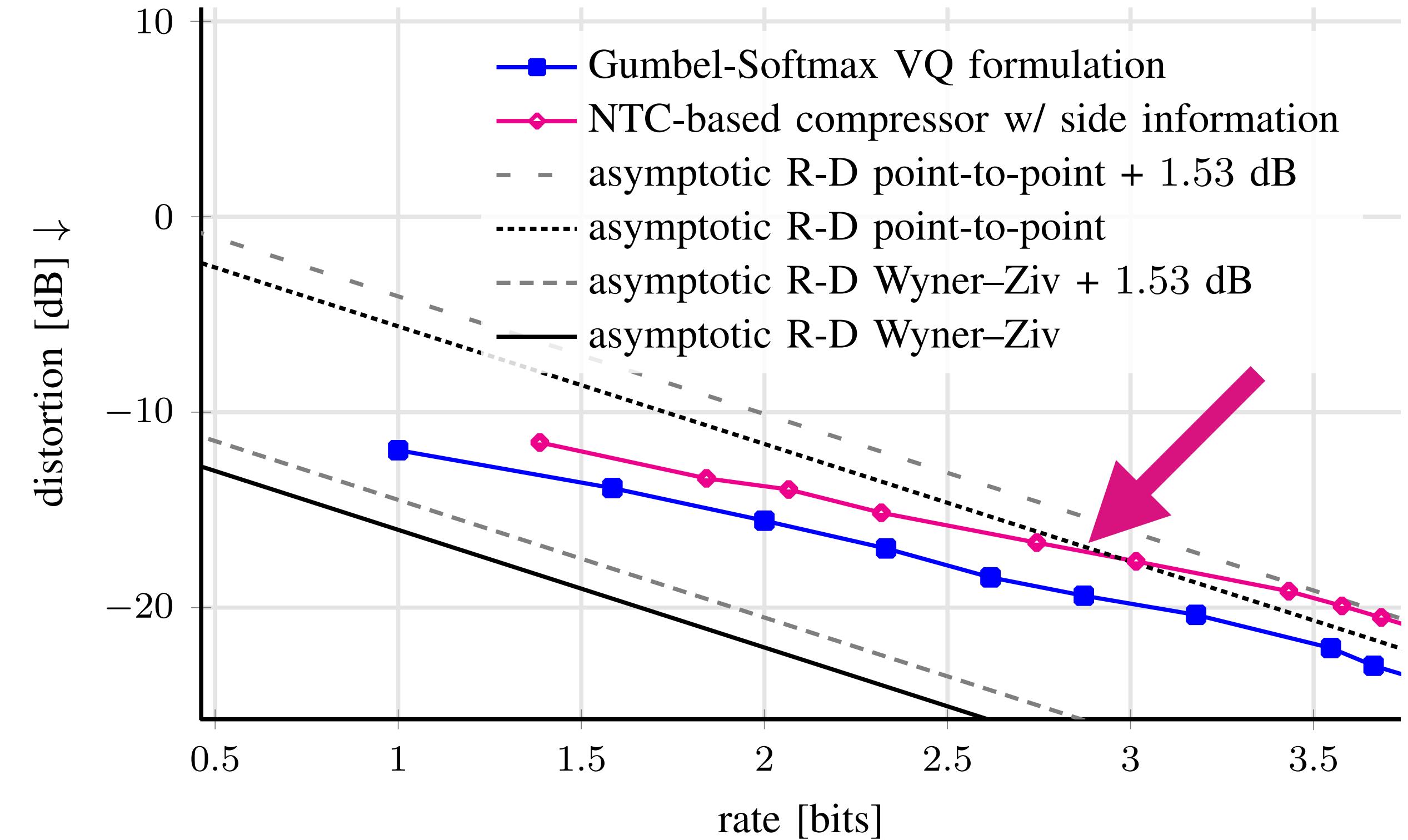
$$X = Y + N$$

$$Y \sim \mathcal{N}(0,1)$$

$$N \sim \mathcal{N}(0,10^{-1})$$

Empirical results of Gumbel-Softmax

The **inability** to
effectively perform
“**binning**” (grouping)
hurts the performance
of NTC.



$$X = Y + N$$

$$Y \sim \mathcal{N}(0,1)$$

$$N \sim \mathcal{N}(0,10^{-1})$$

Training with **Gumbel–Softmax** objective

- Optimization requires hyperparameter search (e.g., temperature scheduling).
- The loss function is not an upper bound on true objective (the rate-distortion).

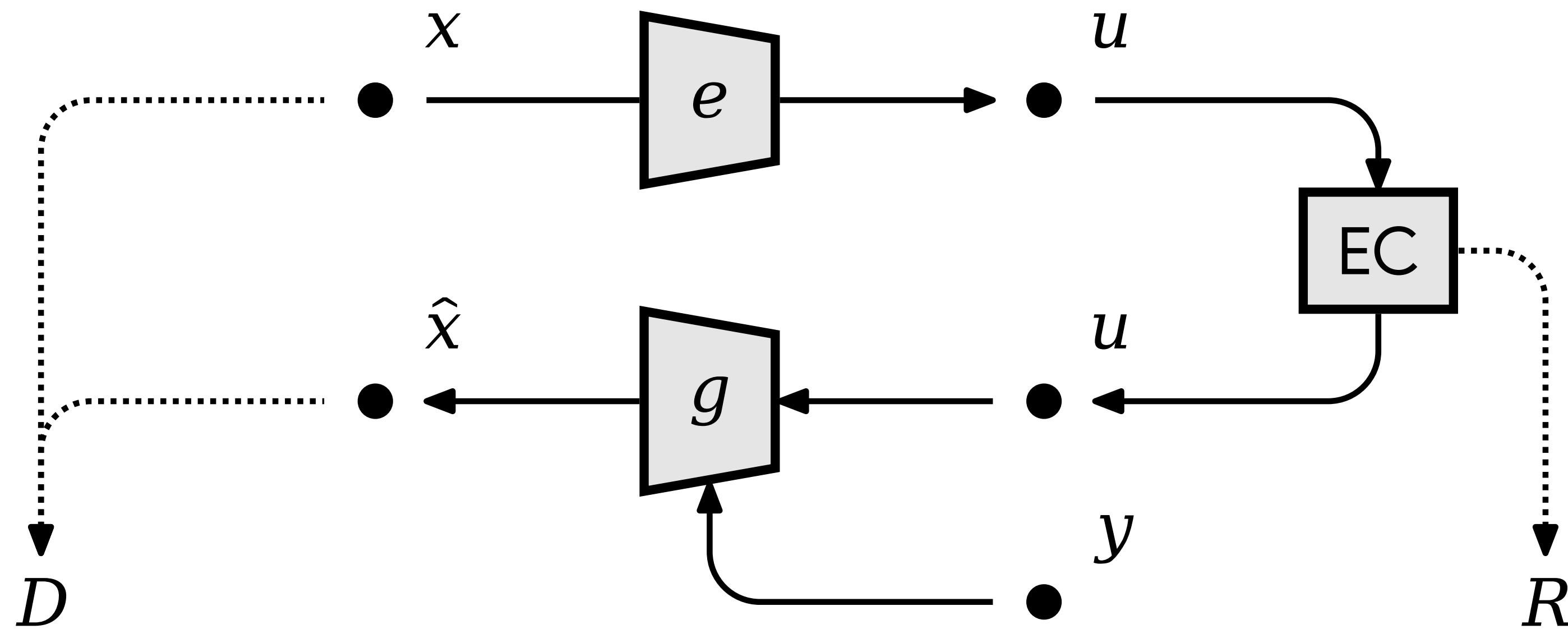
Training with Gumbel–Softmax objective

- Optimization requires hyperparameter search (e.g., temperature scheduling).
- The loss function is not an upper bound on true objective (the rate-distortion).
- **Another solution** for replacing $e_\theta : \mathbb{R} \mapsto \mathbb{Z}$ with $e_\theta : \mathbb{R} \mapsto \{a, b, c, d, \dots\}$:

Training with **Gumbel–Softmax** objective

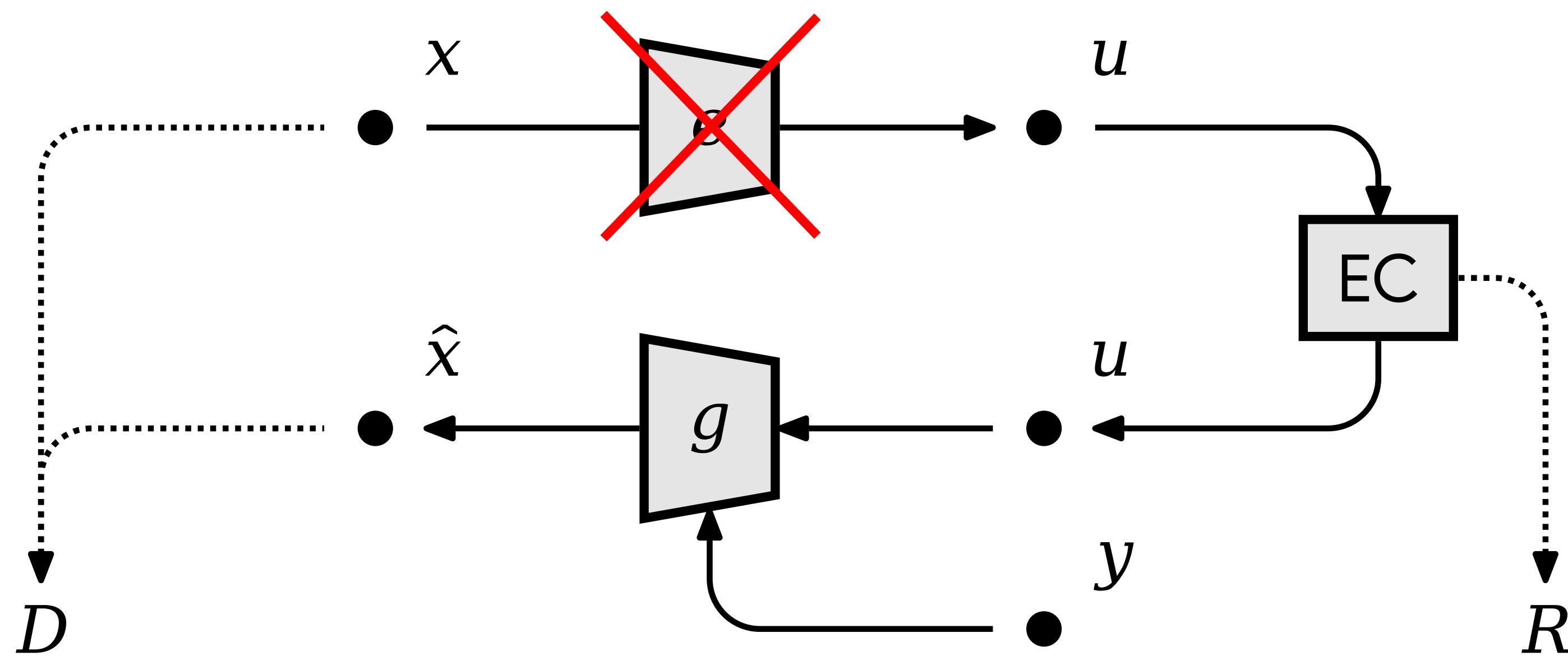
- Optimization requires hyperparameter search (e.g., temperature scheduling).
- The loss function is not an upper bound on true objective (the rate-distortion).
- **Another solution** for replacing $e_\theta : \mathbb{R} \mapsto \mathbb{Z}$ with $e_\theta : \mathbb{R} \mapsto \{a, b, c, d, \dots\}$:
 - Encoder follows **classical entropy-coded vector quantizer (ECVQ)**.
 - Encoder is completely *unstructured* in this case:
 - can assign any quantization index to input realization.

ECVQ version of Wyner–Ziv model



$$u = \arg \min_{k \in K} \mathbb{E}_{p(y|x)} \left[\underbrace{-\log p_\psi(k)}_{\text{rate}} + \underbrace{\lambda \cdot d(x, g_\phi(k, y))}_{\text{distortion}} \right]$$

ECVQ version of Wyner–Ziv model

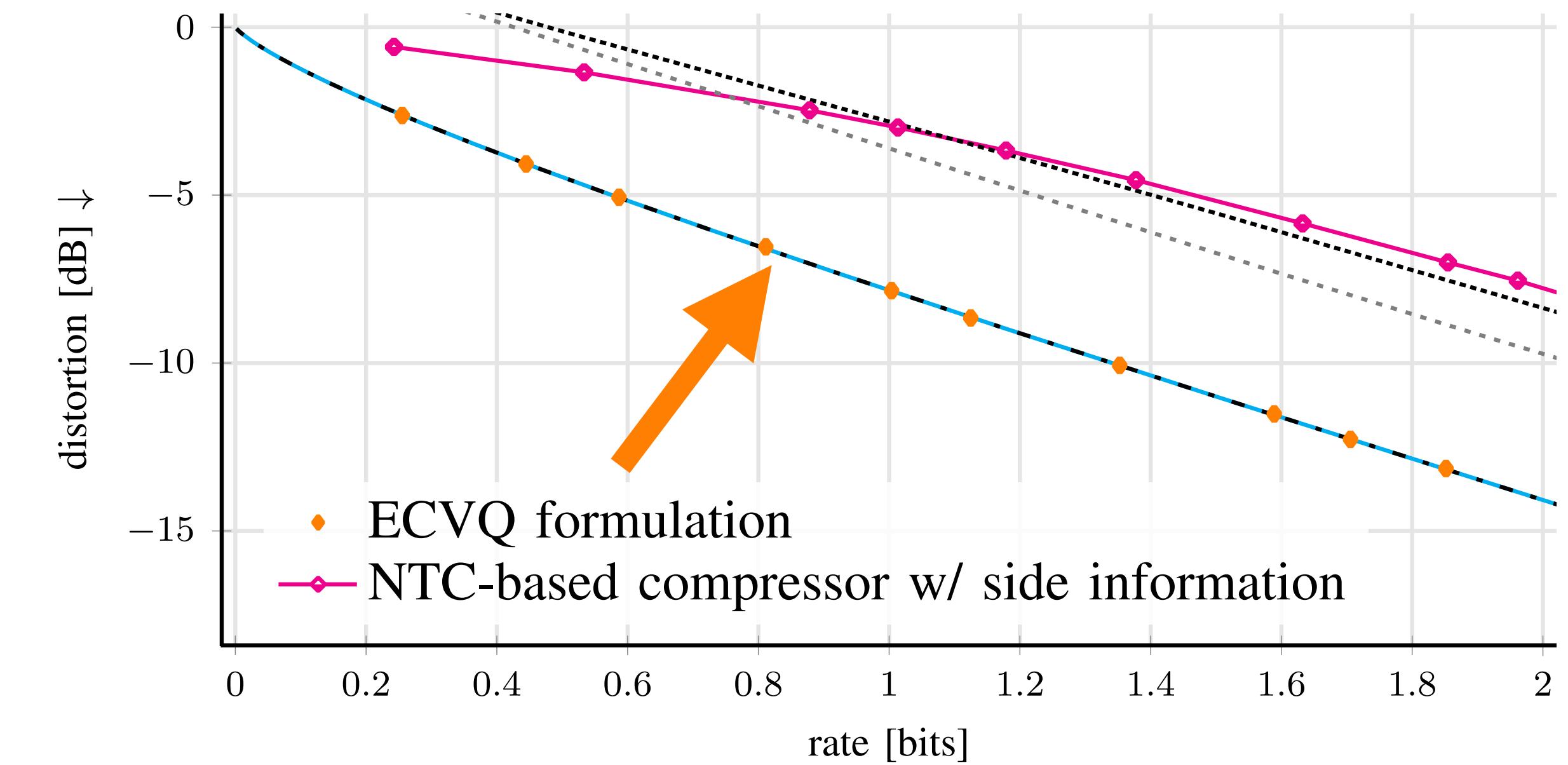


$$u = \arg \min_{k \in K} \mathbb{E}_{p(y|x)} \left[\underbrace{-\log p_\psi(k)}_{\text{rate}} + \underbrace{\lambda \cdot d(x, g_\phi(k, y))}_{\text{distortion}} \right]$$

ECVQ vs. NTC

ECVQ vs. NTC

- ECVQ objective is exactly what we want to optimize and requires *no relaxation* (e.g., temperature scheduling).

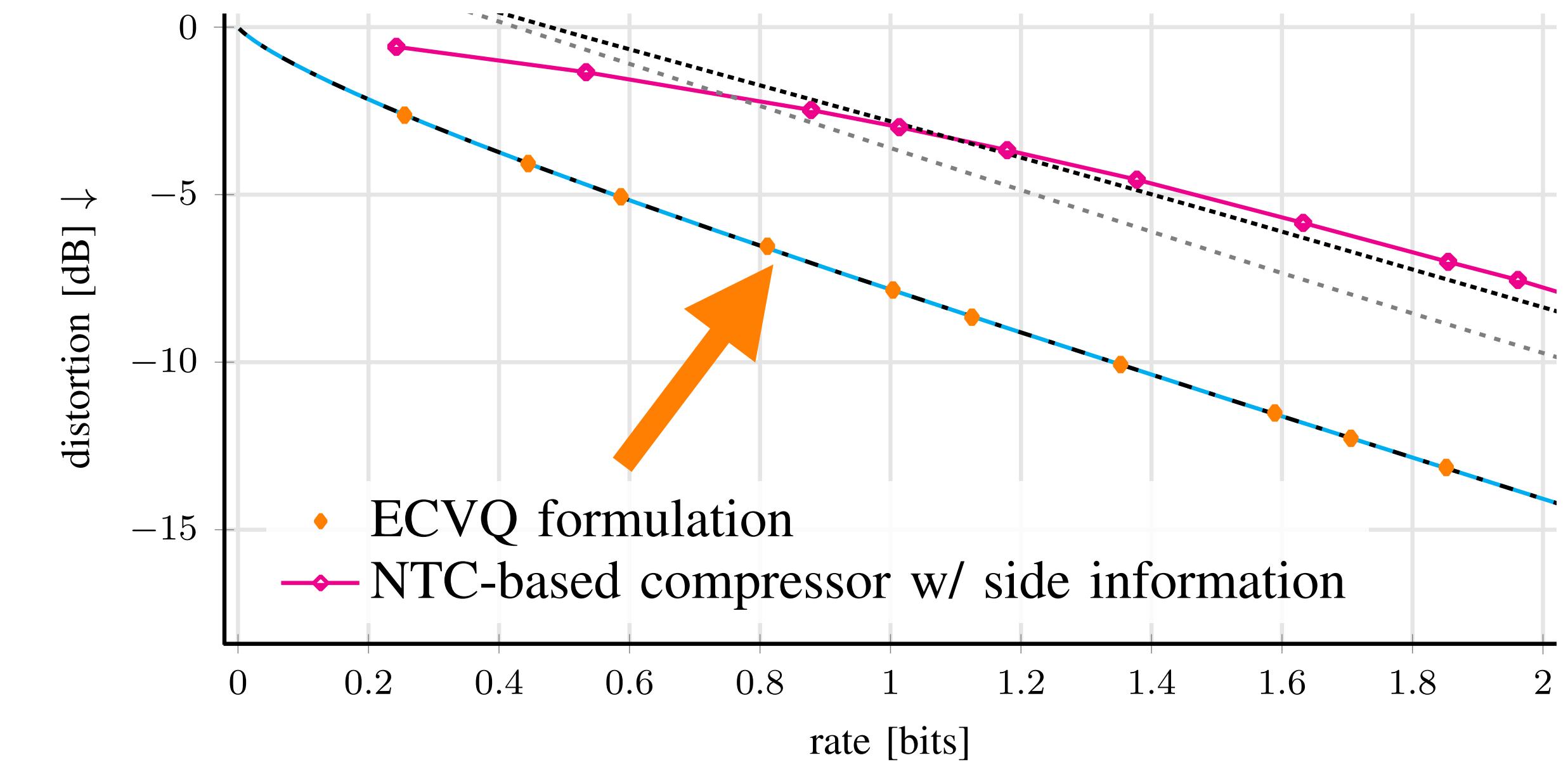


$$X \sim \text{Laplace}(0,1)$$

$$Y = \text{sgn}(X)$$

ECVQ vs. NTC

- ECVQ objective is exactly what we want to optimize and requires *no relaxation* (e.g., temperature scheduling).
- But, the encoder doesn't scale to higher dimensions (as in “traditional” VQ models)!



$$X \sim \text{Laplace}(0,1)$$

$$Y = \text{sgn}(X)$$

Summary on Neural Distributed Compression

- NTC-based solutions showed promise for low rate distributed image compression.
 - Mital*, Ozyilkan*, Gargani & Gündüz (IEEE/CVF WACV, 2023)
 - Mital*, Ozyilkan*, Gargani & Gündüz (IEEE DCC, 2022)

Summary on Neural Distributed Compression

- NTC-based solutions showed promise for low rate distributed image compression.
 - Mital*, Ozyilkan*, Gargani & Gündüz (IEEE/CVF WACV, 2023)
 - Mital*, Ozyilkan*, Gargani & Gündüz (IEEE DCC, 2022)
- But, using state-of-the-art NTC *naïvely* does not get close to the optimum.
 - The *smoothness learning bias* prevents it from recovering arbitrary maps at the encoder.
 - Ozyilkan, Ballé & Erkip (ISIT, 2023 & Neural Compression Workshop @ ICML'23)
 - Ozyilkan, Ballé & Erkip (IEEE J. Sel. Areas Information Theory, 2024)

Summary on Neural Distributed Compression

- NTC-based solutions showed promise for low rate distributed image compression.
 - Mital*, Ozyilkan*, Gargani & Gündüz (IEEE/CVF WACV, 2023)
 - Mital*, Ozyilkan*, Gargani & Gündüz (IEEE DCC, 2022)
- But, using state-of-the-art NTC *naïvely* does not get close to the optimum.
 - The *smoothness learning bias* prevents it from recovering arbitrary maps at the encoder.
 - Ozyilkan, Ballé & Erkip (ISIT, 2023 & Neural Compression Workshop @ ICML'23)
 - Ozyilkan, Ballé & Erkip (IEEE J. Sel. Areas Information Theory, 2024)
 - We need *less structured* methods to recover high-frequency mappings (e.g., “binning”).
 - Ozyilkan, Ballé, Bhadane, Wagner & Erkip (Compression Workshop @ NeurIPS, 2024)
 - Ozyilkan*, Sriramu*, Wagner, Erkip & Ballé (manuscript in submission)

Extensions and related projects

A. Robust distributed compression (Heegard–Berger)

[Tasci, Ozyilkan, Ulger, Erkip \(IEEE ISIT-W, 2024\)](#)

B. Distributed Deep Joint Source–Channel Coding

[Yilmaz, Ozyilkan, Gündüz, Erkip \(IEEE ICMLCN, 2024\)](#)

Extensions and related projects

- A. Robust distributed compression (Heegard–Berger)
[Tasci, Ozyilkan, Ulger, Erkip \(IEEE ISIT-W, 2024\)](#)
- B. Distributed Deep Joint Source–Channel Coding
[Yilmaz, Ozyilkan, Gündüz, Erkip \(IEEE ICMLCN, 2024\)](#)
- C. Developing scalable, beyond one-shot,
learning-based ECVQ-like methods (ongoing)
- D. “Dual” problem of Wyner–Ziv in channel coding: *dirty paper coding*
[Ozyilkan, Ulger, Erkip \(IEEE ITW, 2025\)](#)

Extensions and related projects

- A. Robust distributed compression (Heegard–Berger)
[Tasci, Ozyilkan, Ulger, Erkip \(IEEE ISIT-W, 2024\)](#)
- B. Distributed Deep Joint Source–Channel Coding
[Yilmaz, Ozyilkan, Gündüz, Erkip \(IEEE ICMLCN, 2024\)](#)
- C. Developing scalable, beyond one-shot,
learning-based ECVQ-like methods (ongoing)
- D. “Dual” problem of Wyner–Ziv in channel coding: *dirty paper coding*
[Ozyilkan, Ulger, Erkip \(IEEE ITW, 2025\)](#)
- E. Neural compress-and-forward for the relay → Part II.B

C. Developing scalable learning-based ECVQ

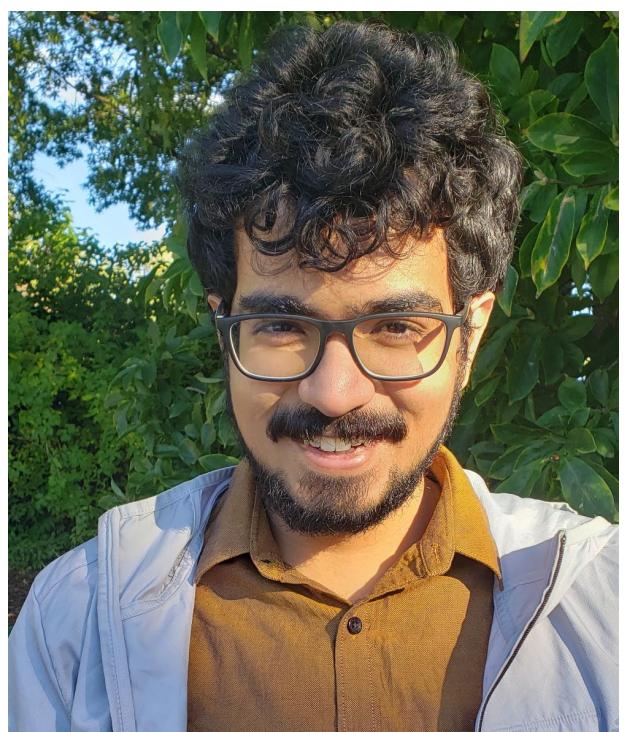
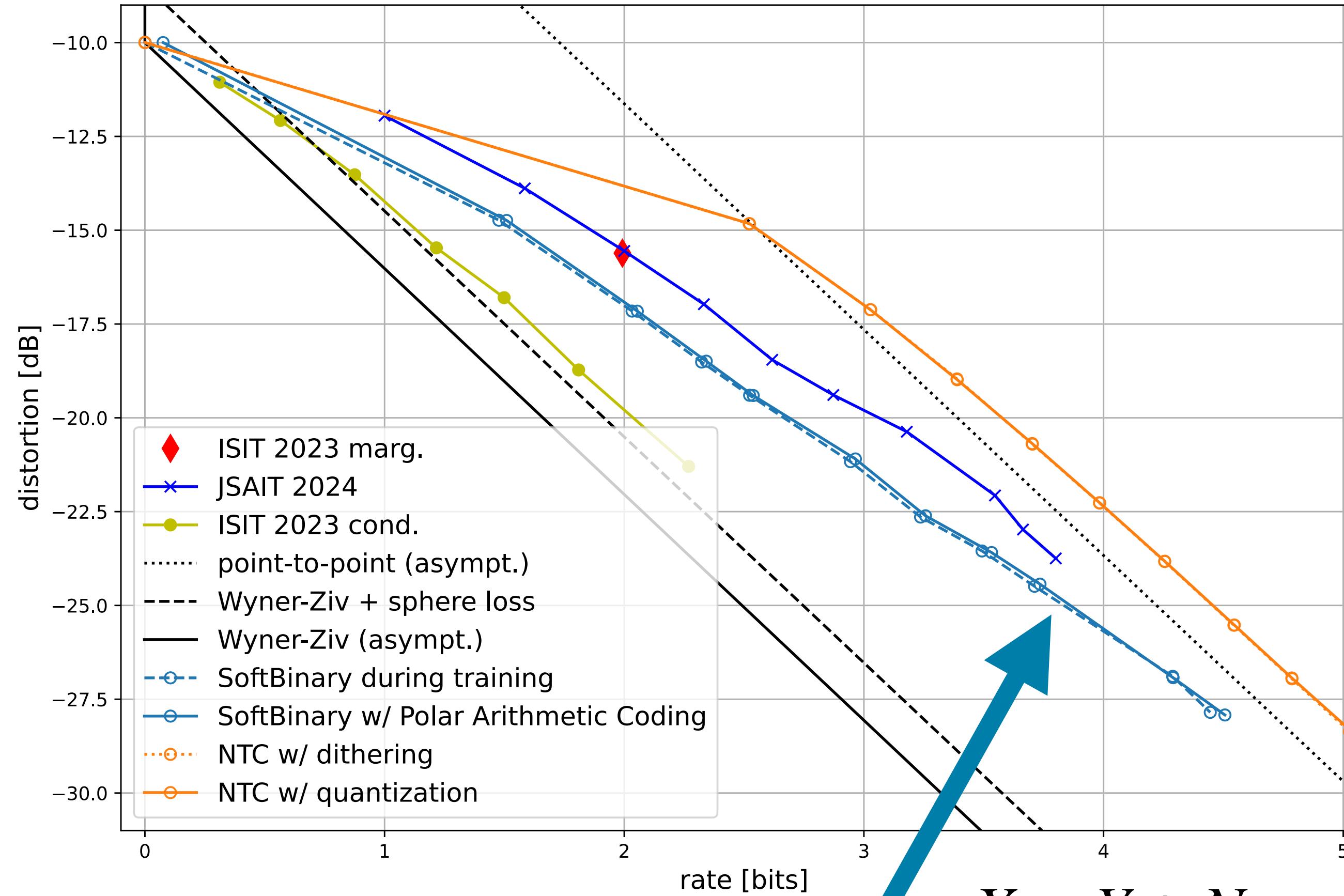
C. Developing scalable learning-based ECVQ

$$X = Y + N$$

$$Y \sim \mathcal{N}(0,1)$$

$$N \sim \mathcal{N}(0,10^{-1})$$

C. Developing scalable learning-based ECVQ



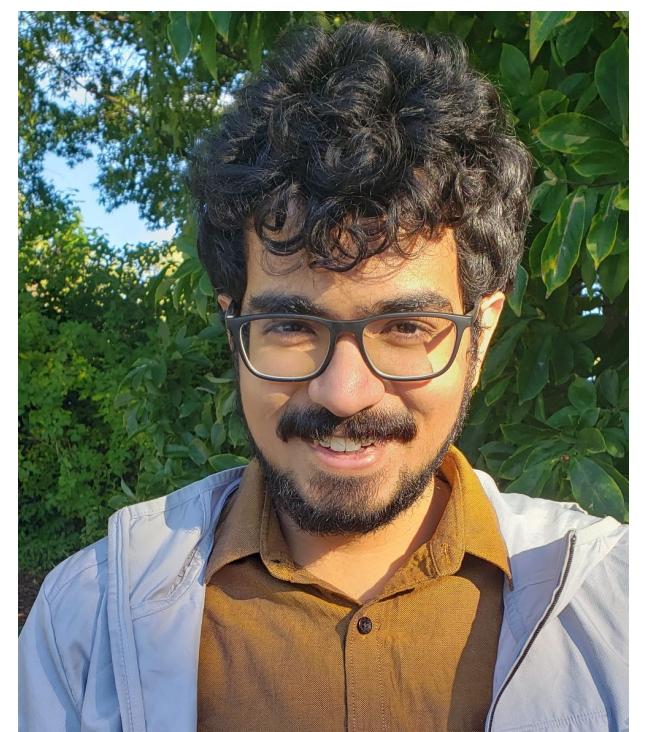
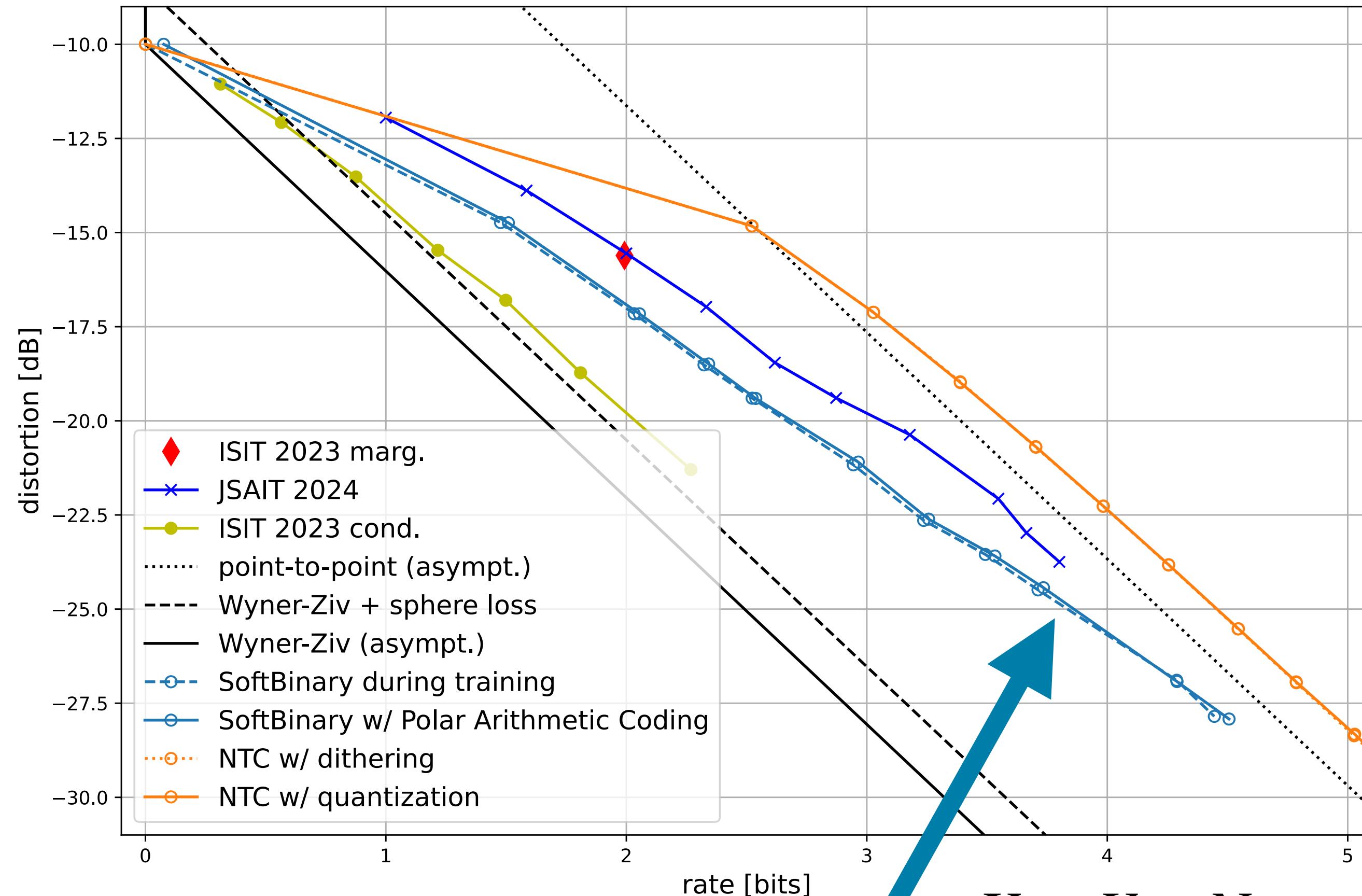
$$X = Y + N$$

$$Y \sim \mathcal{N}(0,1)$$

$$N \sim \mathcal{N}(0,10^{-1})$$

- *SoftBinary* model:
 $e_{\theta} : \mathbb{R} \mapsto \{0,1\}^d$, where
encoder is now
stochastic.

C. Developing scalable learning-based ECVQ



$$X = Y + N$$

$$Y \sim \mathcal{N}(0,1)$$

$$N \sim \mathcal{N}(0,10^{-1})$$

- *SoftBinary* model:
 $e_{\theta} : \mathbb{R} \mapsto \{0,1\}^d$, where
encoder is now
stochastic.

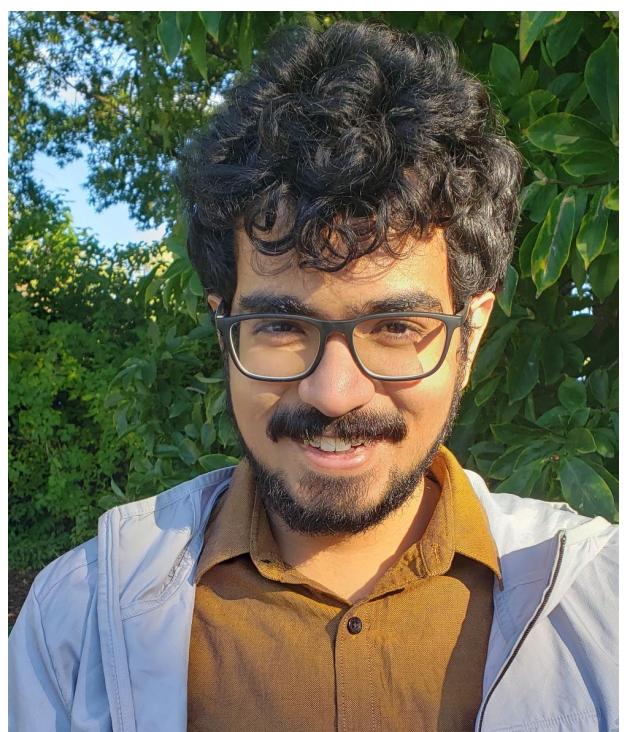
- Assumes a “channel simulation” instead of (traditional) entropy coding:

$$R = \mathbb{E}_x[D_{\text{KL}}(q_{\text{enc}} \parallel p_{\text{prior}})]$$

instead of

$$R = \mathbb{E}_{x,q}[-\log p_{\text{prior}}].$$

C. Developing scalable learning-based ECVQ



- *SoftBinary* model:
 $e_{\theta} : \mathbb{R} \mapsto \{0,1\}^d$, where
encoder is now
stochastic.

- Assumes a “channel
simulation” instead of
(traditional) entropy
coding:

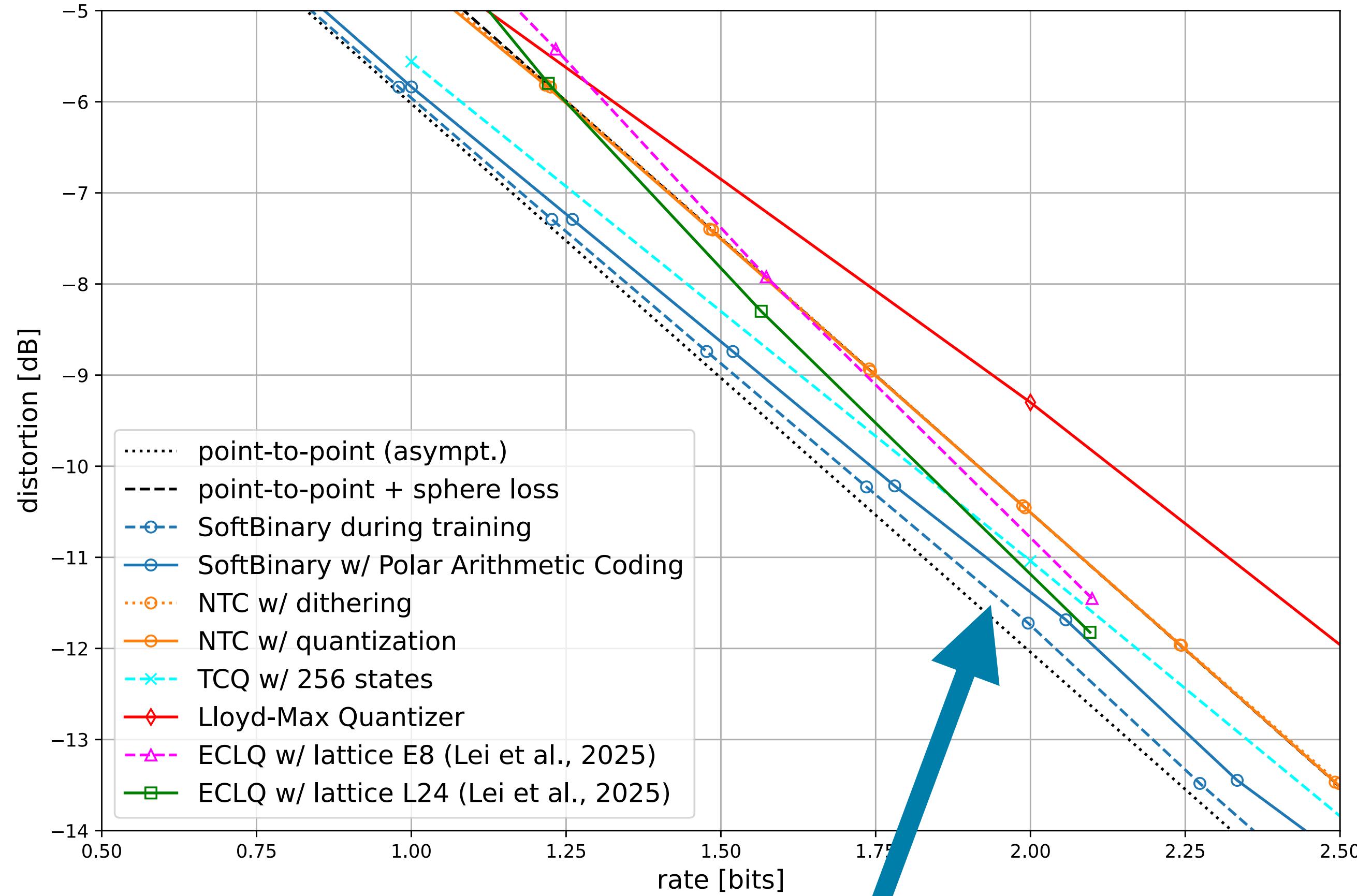
$$R = \mathbb{E}_x[\text{D}_{\text{KL}}(q_{\text{enc}} \parallel p_{\text{prior}})]$$

instead of

$$R = \mathbb{E}_{x,q}[-\log p_{\text{prior}}].$$

$$X \sim \mathcal{N}(0,1.0)$$

C. Developing scalable learning-based ECVQ



$$X \sim \mathcal{N}(0, 1.0)$$

- *SoftBinary* model:
 $e_{\theta} : \mathbb{R} \mapsto \{0,1\}^d$, where
encoder is now
stochastic.
- Assumes a “channel
simulation” instead of
(traditional) entropy
coding:

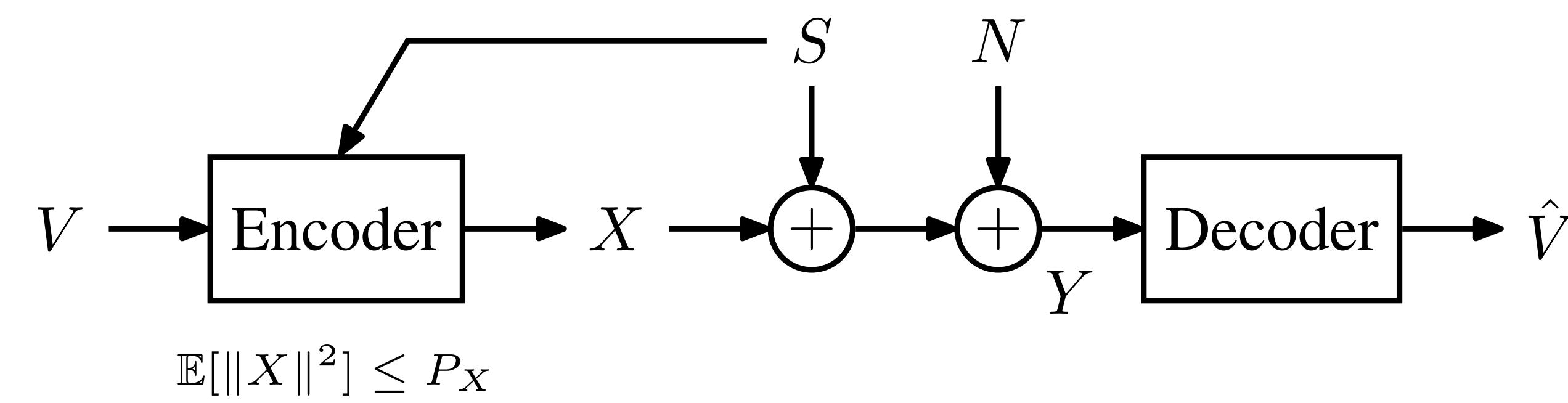
$$R = \mathbb{E}_x[D_{\text{KL}}(q_{\text{enc}} \parallel p_{\text{prior}})]$$

instead of

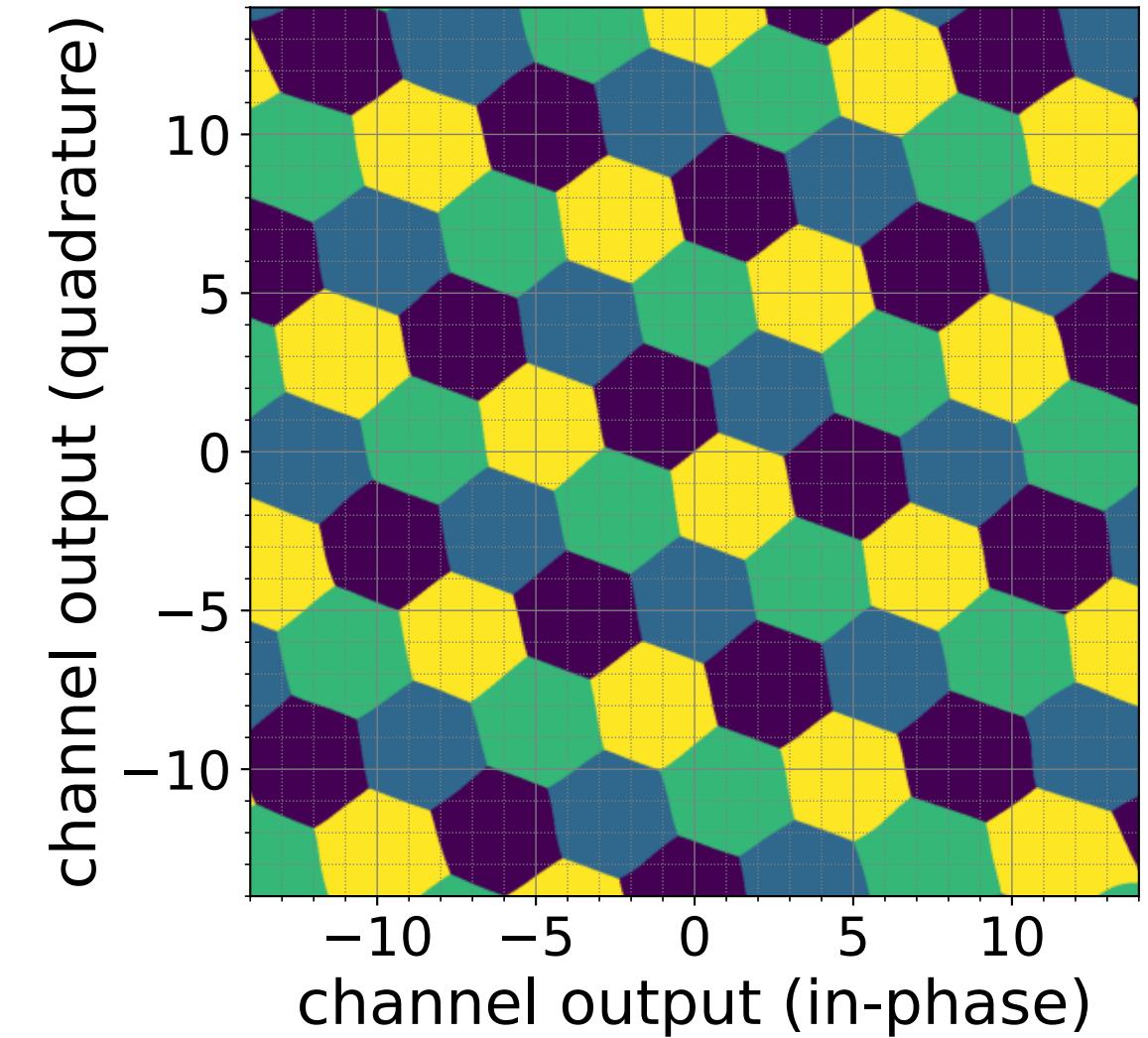
$$R = \mathbb{E}_{x,q}[-\log p_{\text{prior}}].$$

D. “Dual” problem of Wyner-Ziv:

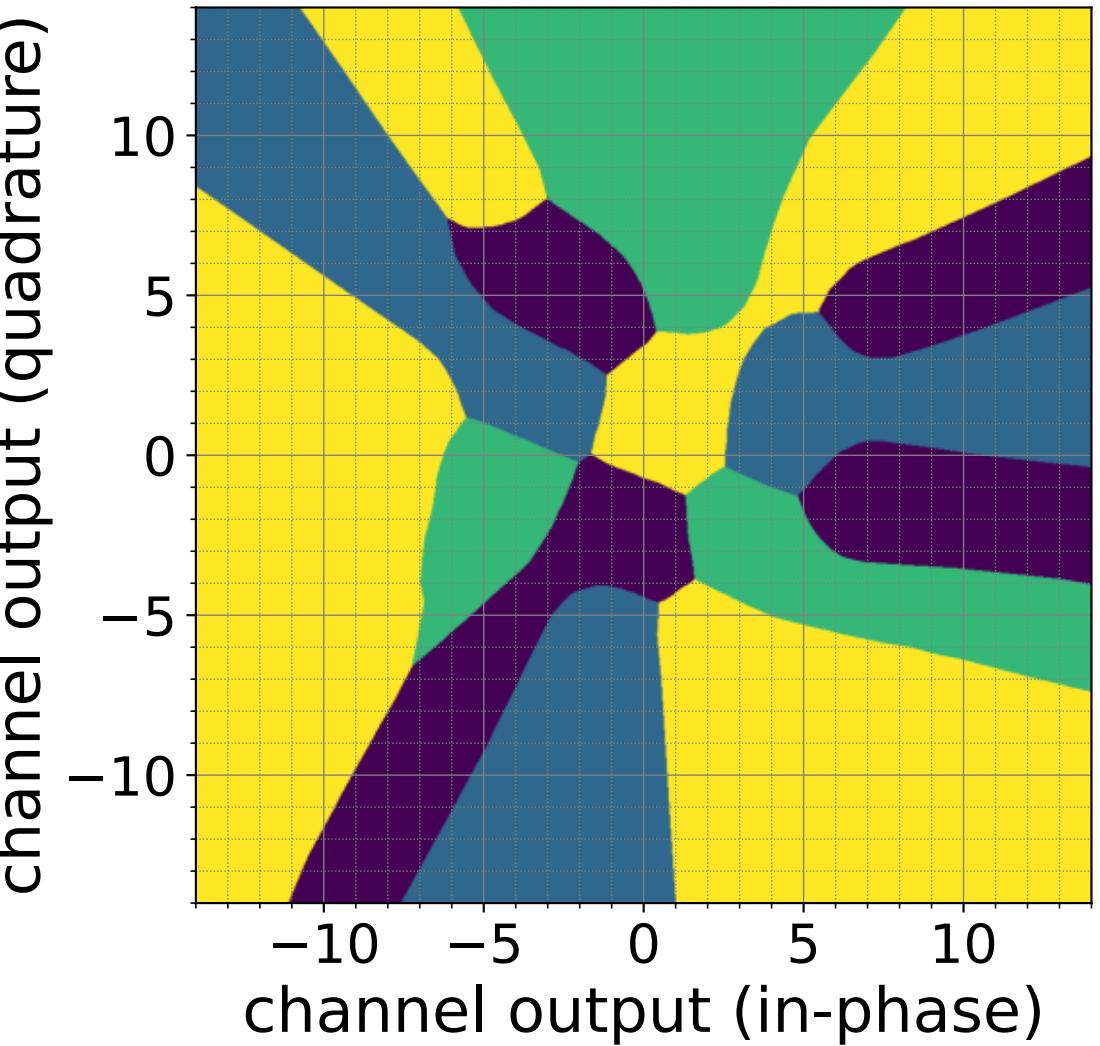
Dirty Paper Coding



The encoder maps V and known interference S to an input X , subject to an average power constraint.



(a) w/sinusoidal activations, scoring
SNR : 7.03 dB, SER : -1.10 dB.



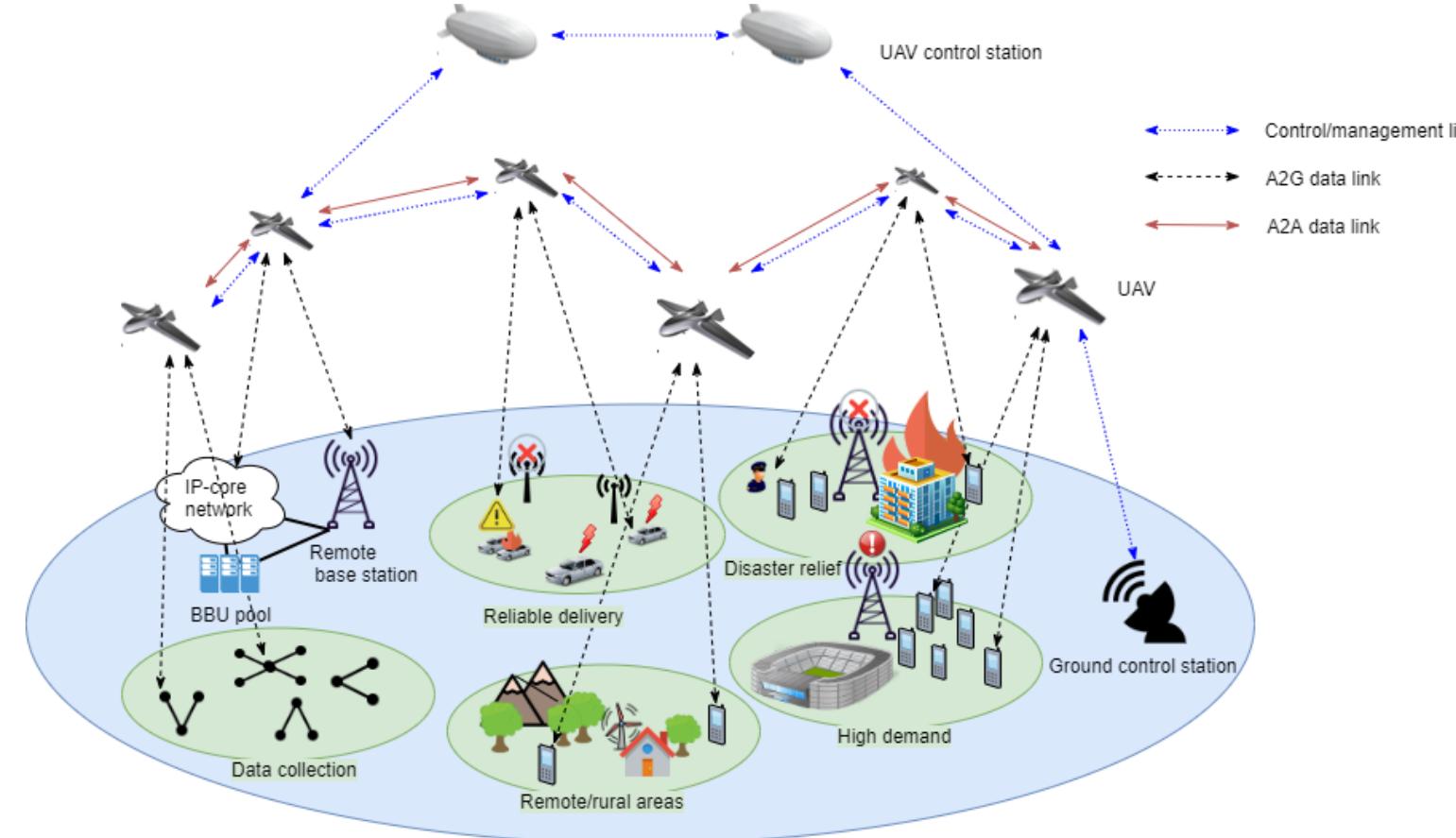
(b) w/leaky ReLU activations, scoring
SNR : 8.83 dB, SER : -1.11 dB.

Part II.B

Neural Compress-and-Forward for the Relay Channel

Introduction

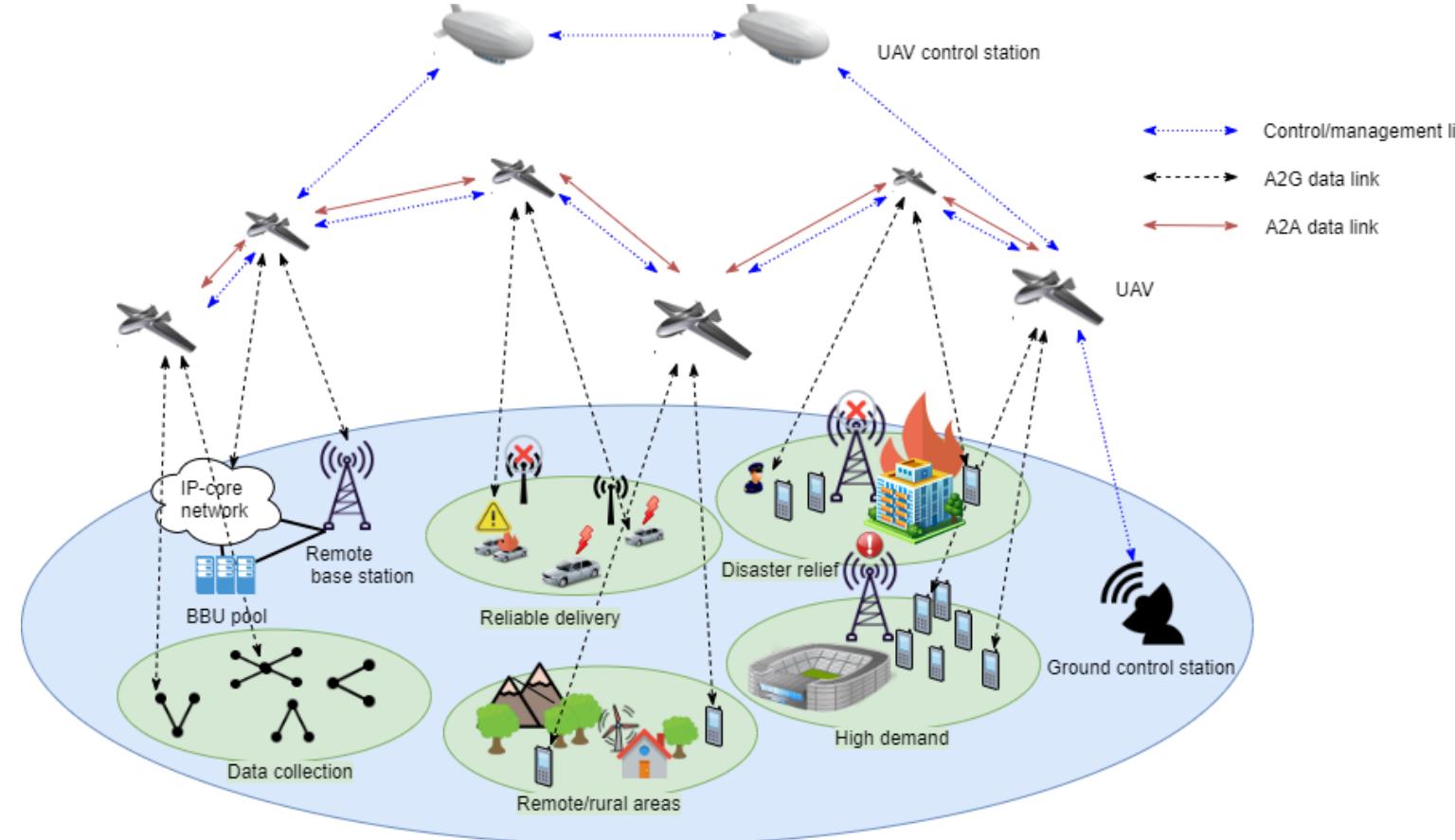
- *Relay channel*: fundamental building block of “cooperative communications”.
 - Applications: relay to improve throughput/coverage, e.g., RIS, drones.



Gholami et. al. “Joint Mobility-Aware UAV Placement and Routing in Multi-Hop UAV Relaying Systems”

Introduction

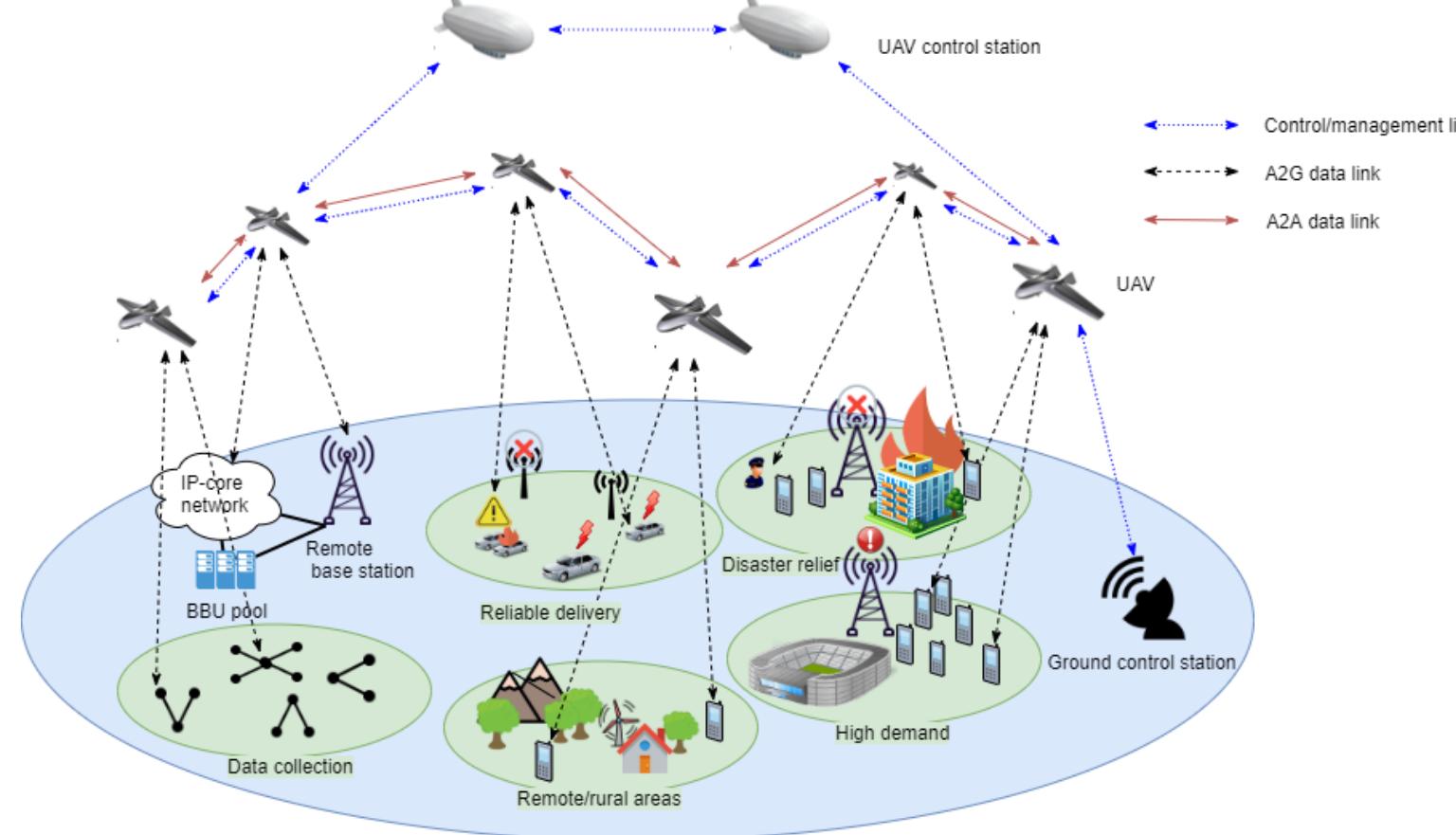
- *Relay channel*: fundamental building block of “cooperative communications”.
 - Applications: relay to improve throughput/coverage, e.g., RIS, drones.



Gholami et. al. “Joint Mobility-Aware UAV Placement and Routing in Multi-Hop UAV Relaying Systems”

Introduction

- *Relay channel*: fundamental building block of “cooperative communications”.
 - Applications: relay to improve throughput/coverage, e.g., RIS, drones.

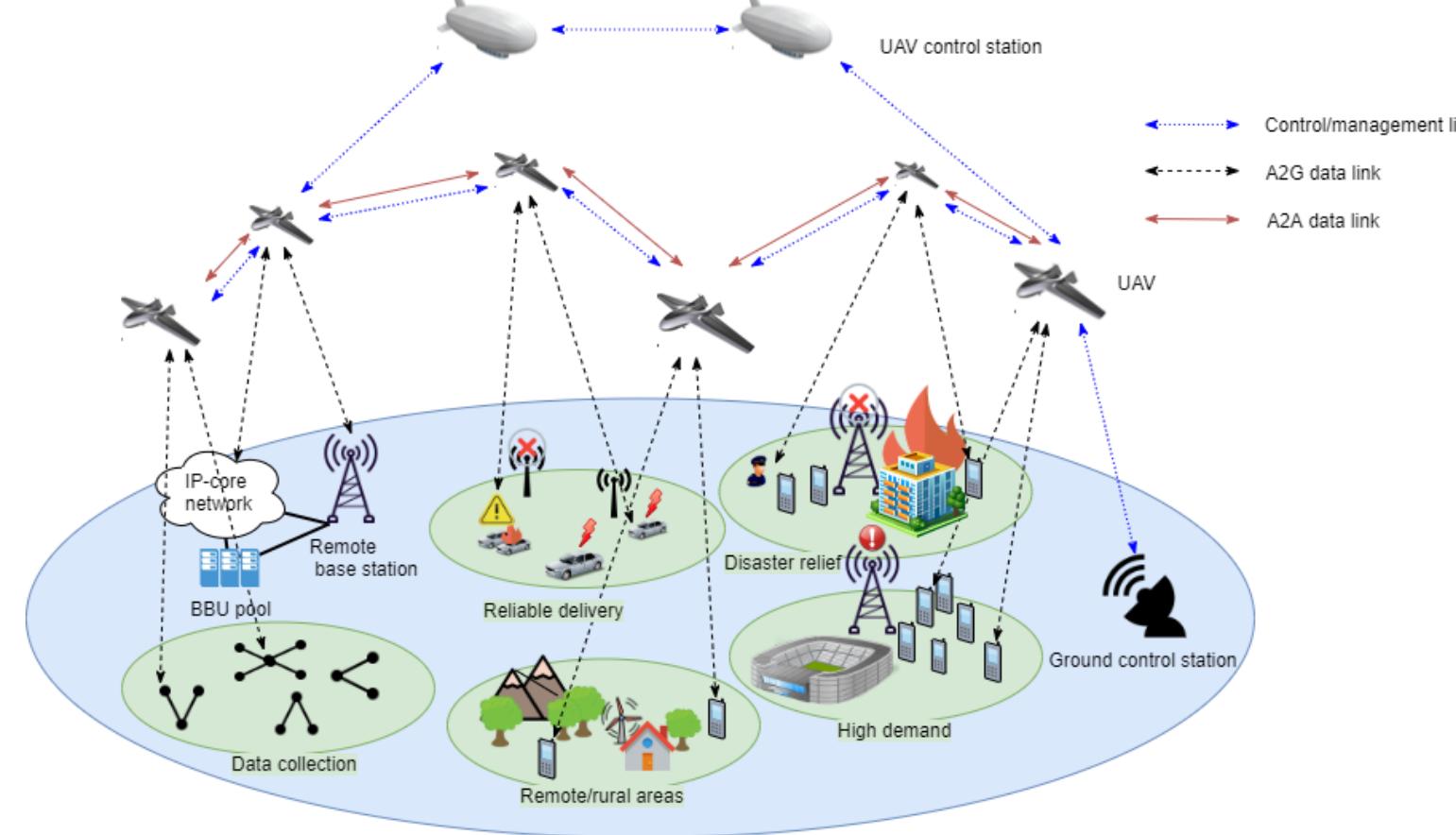


Gholami et. al. “Joint Mobility-Aware UAV Placement and Routing in Multi-Hop UAV Relaying Systems”

- Capacity for the general relay channel is unknown, but several relaying strategies have been proposed.

Introduction

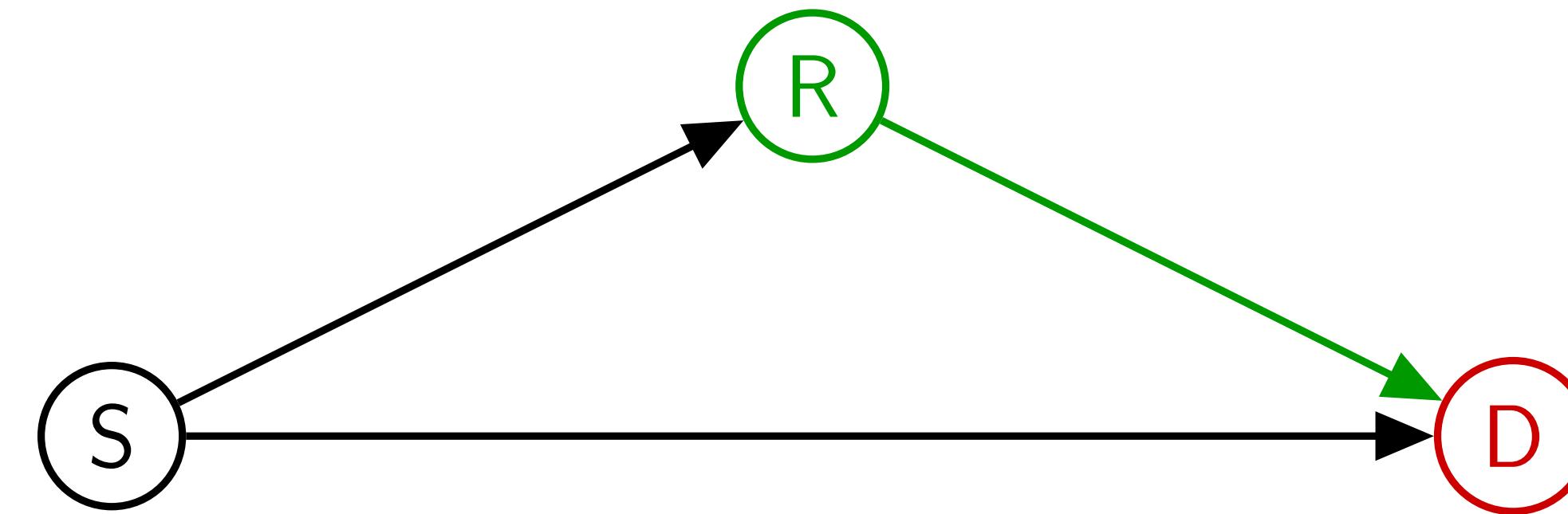
- *Relay channel*: fundamental building block of “cooperative communications”.
 - Applications: relay to improve throughput/coverage, e.g., RIS, drones.



Gholami et. al. “Joint Mobility-Aware UAV Placement and Routing in Multi-Hop UAV Relaying Systems”

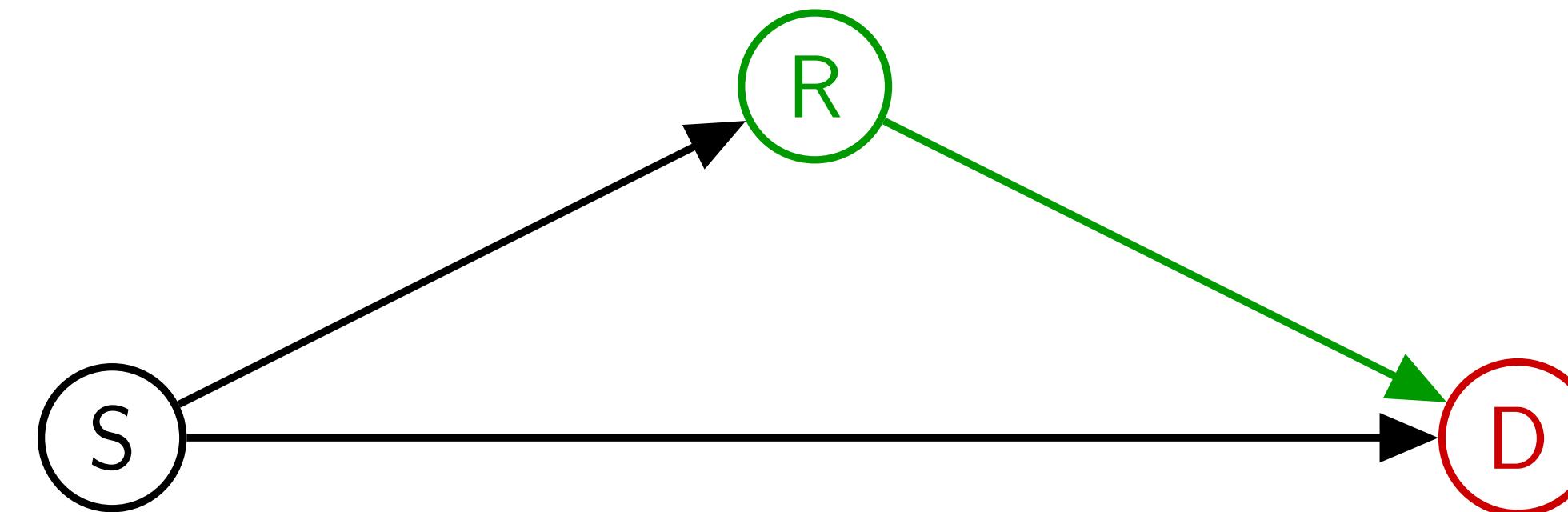
- Capacity for the general relay channel is unknown, but several relaying strategies have been proposed.
 - Amplify-and-forward, decode-and-forward....
 - **Compress-and-forward (CF)**: the relay sends a quantized version of its signal.

Motivation for Distributed Compression



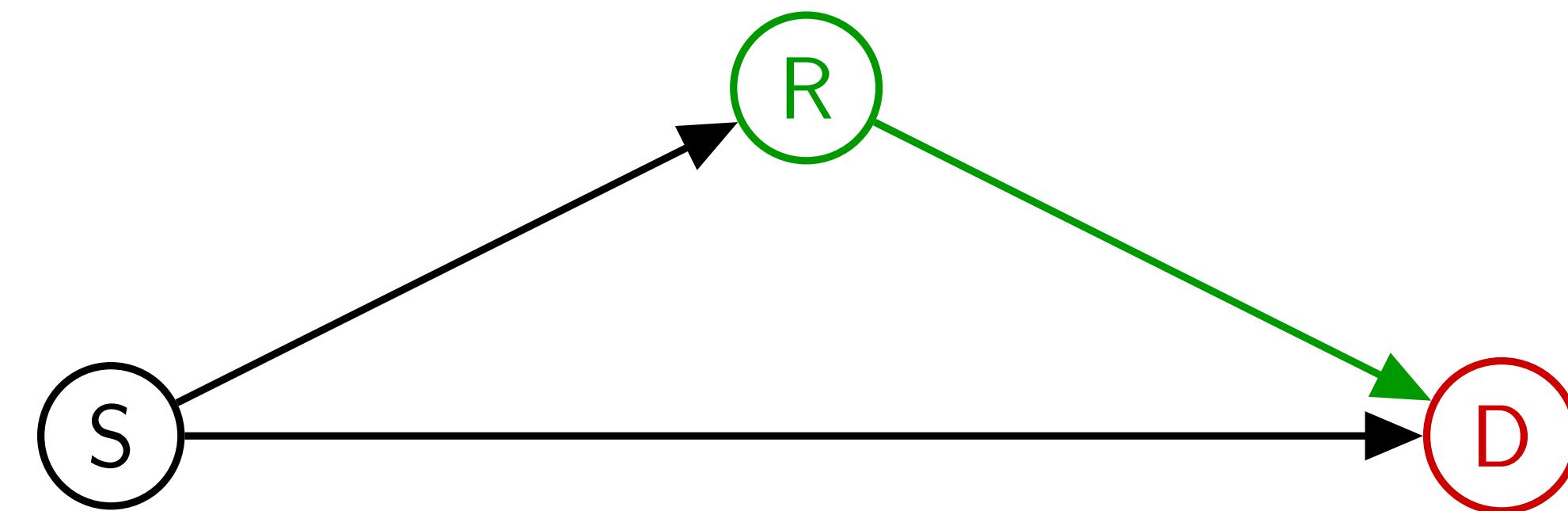
- Relay and destination signals are correlated:
Distributed compression techniques, like Wyner-Ziv, can be useful!

Motivation for Distributed Compression



- Relay and destination signals are correlated:
Distributed compression techniques, like Wyner-Ziv, can be useful!
- ...but practical relaying schemes have not been fully developed.

Motivation for Distributed Compression

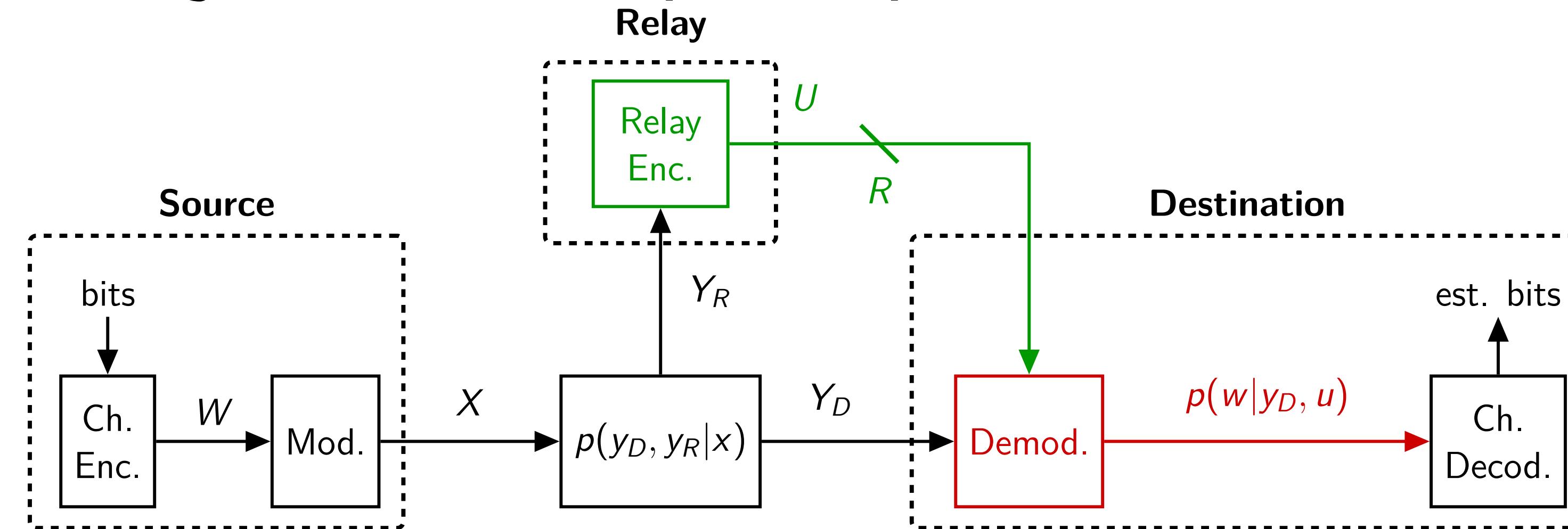


- Relay and destination signals are correlated:
Distributed compression techniques, like Wyner-Ziv, can be useful!
- ...but practical relaying schemes have not been fully developed.
- We model **relays as learned distributed compressors**
→ learned compress-and-forward strategy.

Ozyilkan*, Carpi*, Garg & Erkip (IEEE SPAWC, 2024)

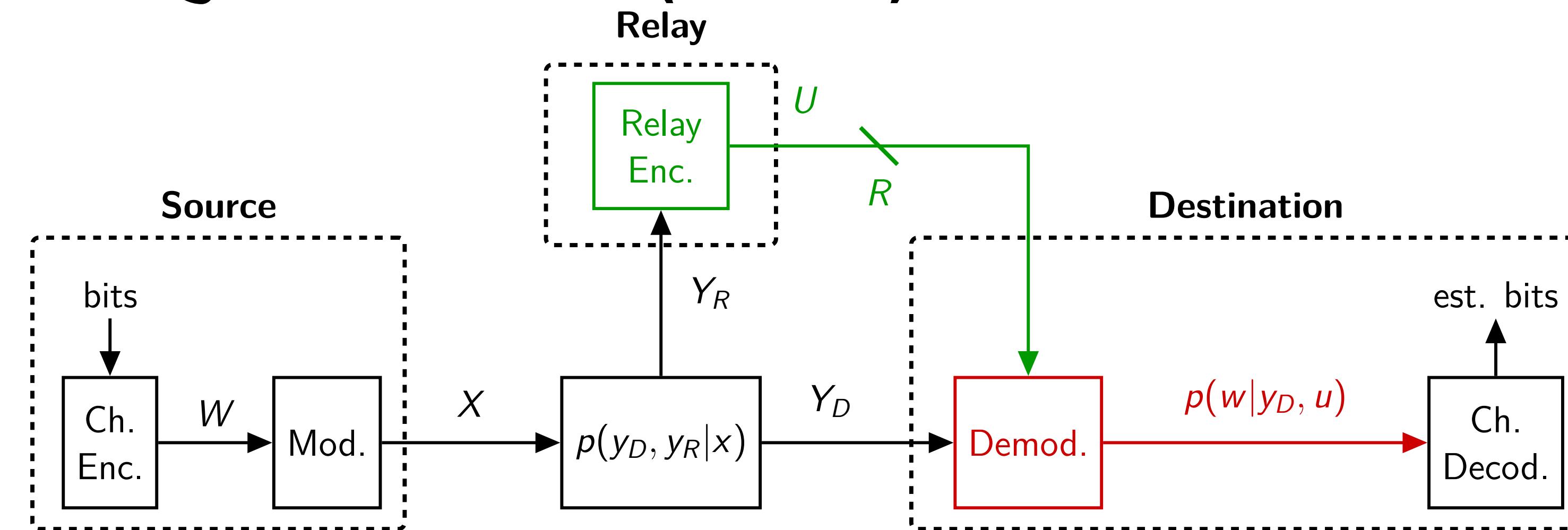
Ozyilkan*, Carpi*, Garg & Erkip (IEEE J. Sel. Areas in Communications, 2025)

Primitive Relay Channel (PRC) — *out-of-band relay*



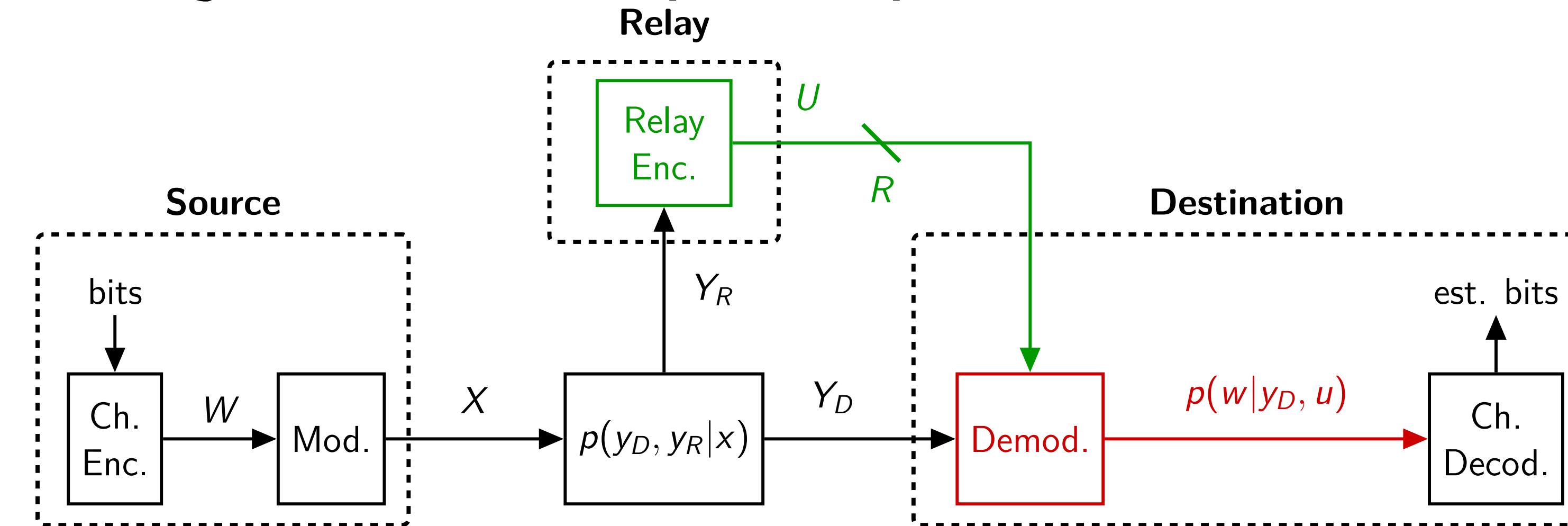
- Relay's POV: Simplest compression setup w/ channel coding.
 - Compress Y_R to help destination decode W via orthogonal noiseless link.

Primitive Relay Channel (PRC) — *out-of-band relay*



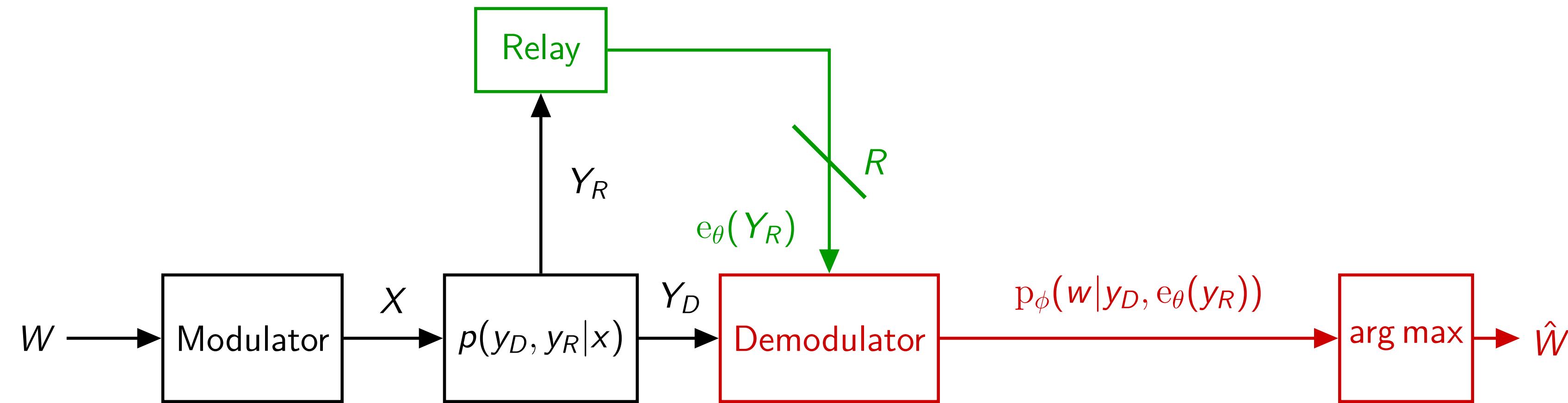
- **Relay's POV:** Simplest compression setup w/ channel coding.
 - Compress Y_R to help destination decode W via orthogonal noiseless link.
 - Compress-and-forward (CF) is optimal for *oblivious* relaying in PRC.

Primitive Relay Channel (PRC) — *out-of-band relay*



- Relay's POV: Simplest compression setup w/ channel coding.
 - Compress Y_R to help destination decode W via orthogonal noiseless link.
 - Compress-and-forward (CF) is optimal for *oblivious* relaying in PRC.
- Goal: maximize **communication rate** $I(X; Y_D, U)$ subject to **rate constraint** R
 - **Task-aware/semantic compression**

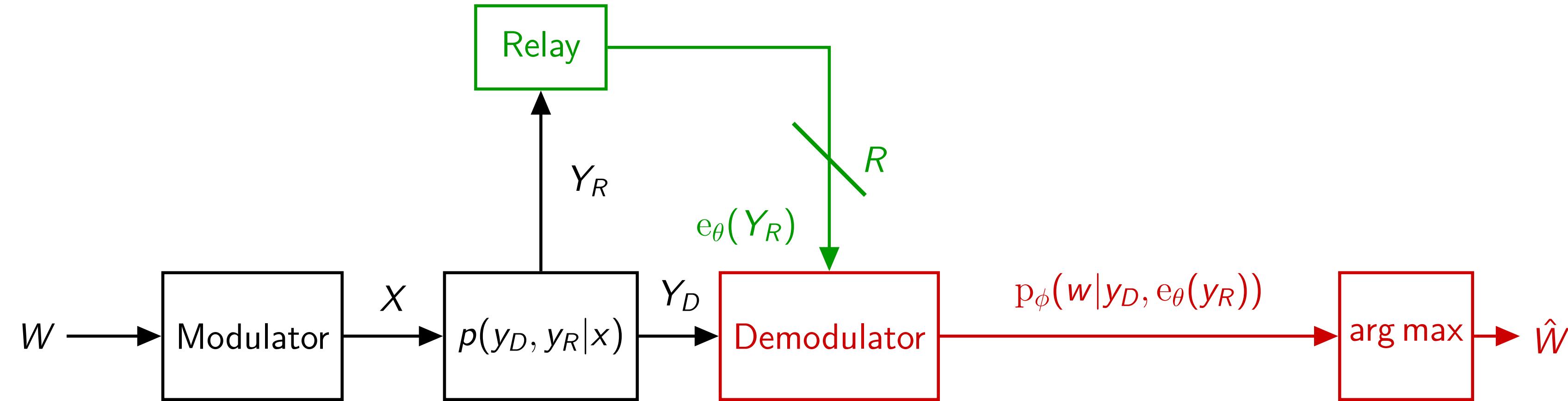
Simulation Scenario



- Source: equally likely symbols, power constraint $P = \mathbb{E}[|X|^2]$

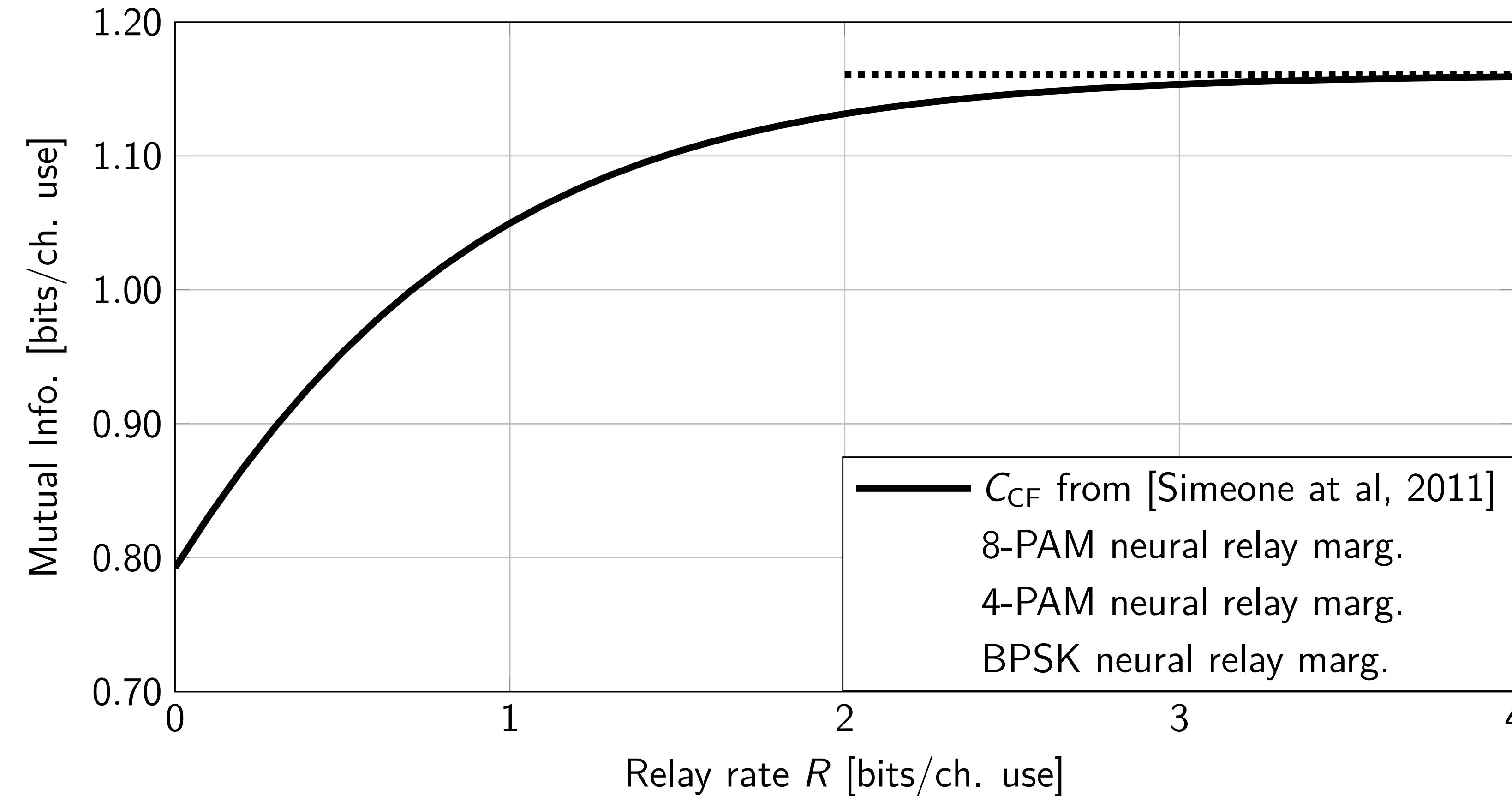
- Real channel: BPSK, 4-PAM, 8-PAM
- Complex channel: QAM, 16-QAM

Simulation Scenario



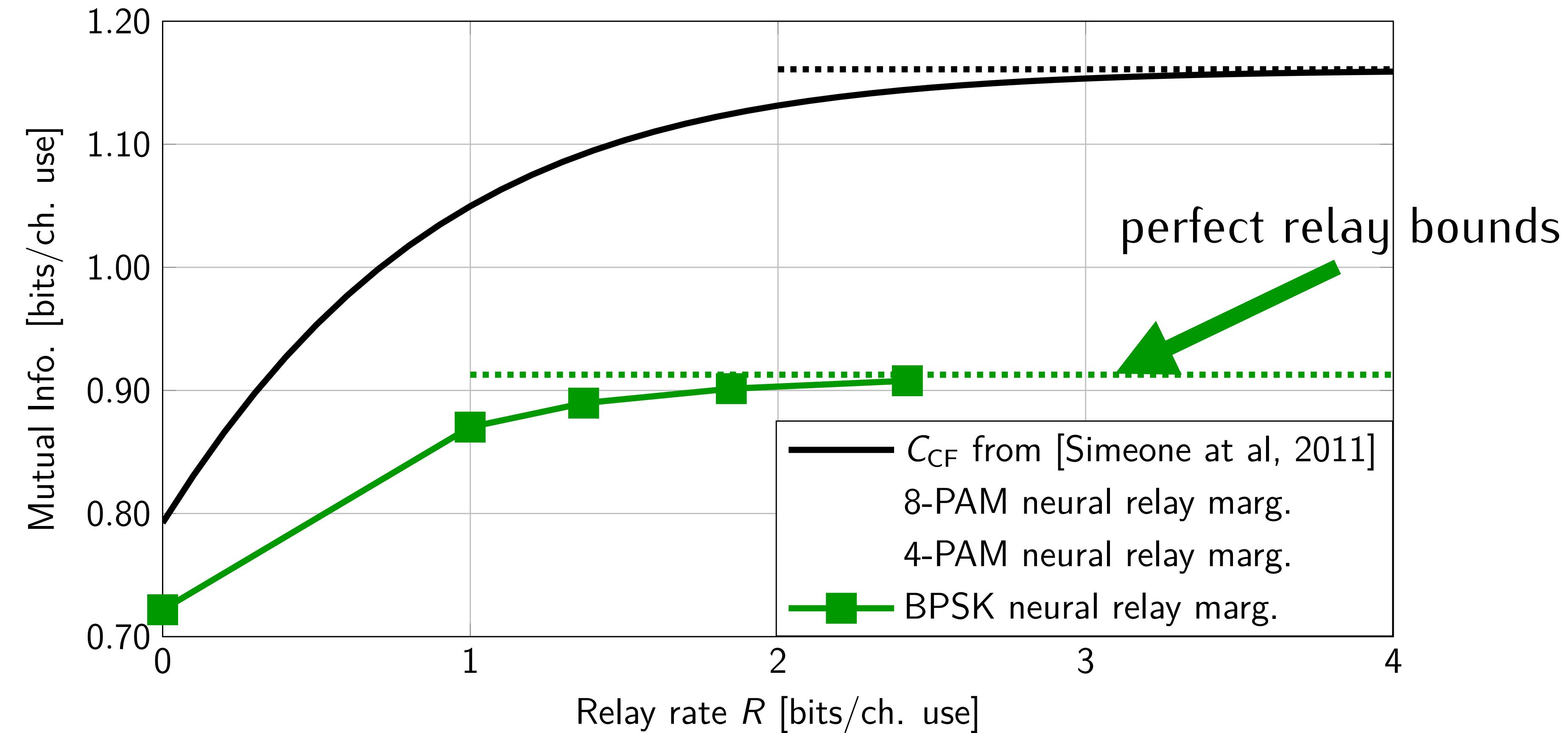
- Source: equally likely symbols, power constraint $P = \mathbb{E}[|X|^2]$
 - Real channel: BPSK, 4-PAM, 8-PAM
 - Complex channel: QAM, 16-QAM
- Channel: $Y_D = X + N_D$ and $Y_R = X + N_R$, with $N_D \perp N_R$
 - (N_D, N_R) (complex) Gaussian noise with variance (σ_D^2, σ_R^2) .
- SNR: $\gamma_D = P/\sigma_D^2$, $\gamma_R = P/\sigma_R^2$.

Mutual Information for Learned CF at $\gamma_D = \gamma_R = 3$ dB



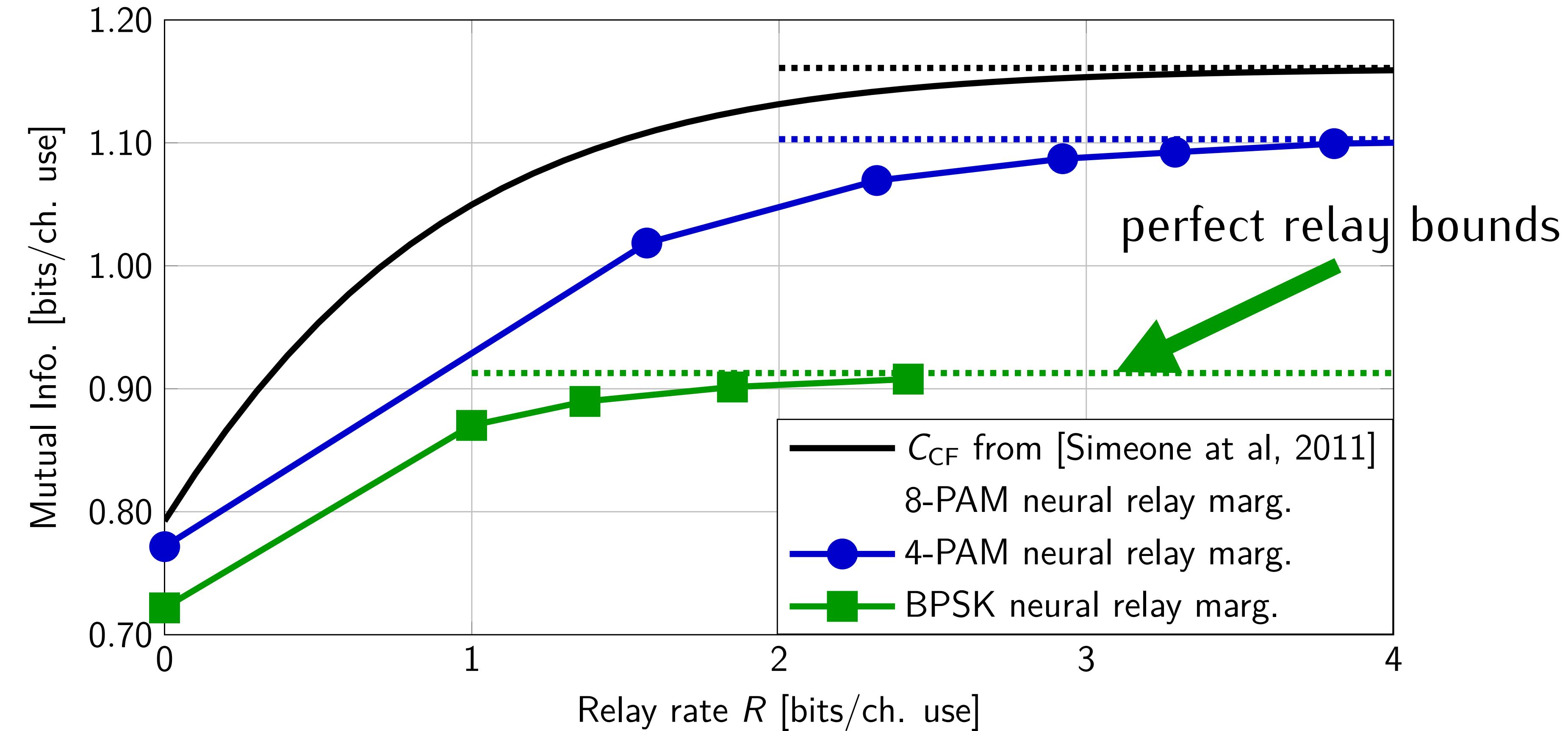
CF achievable rate [Simeone et al, 2011]:
$$C_{CF} = \frac{1}{2} \log_2 \left(1 + \gamma_D + \frac{\gamma_R}{1 + \frac{1 + \gamma_D + \gamma_R}{1 + \frac{(2^{2R} - 1)(\gamma_D + 1)}{}} } \right)$$

Mutual Information for Learned CF at $\gamma_D = \gamma_R = 3$ dB



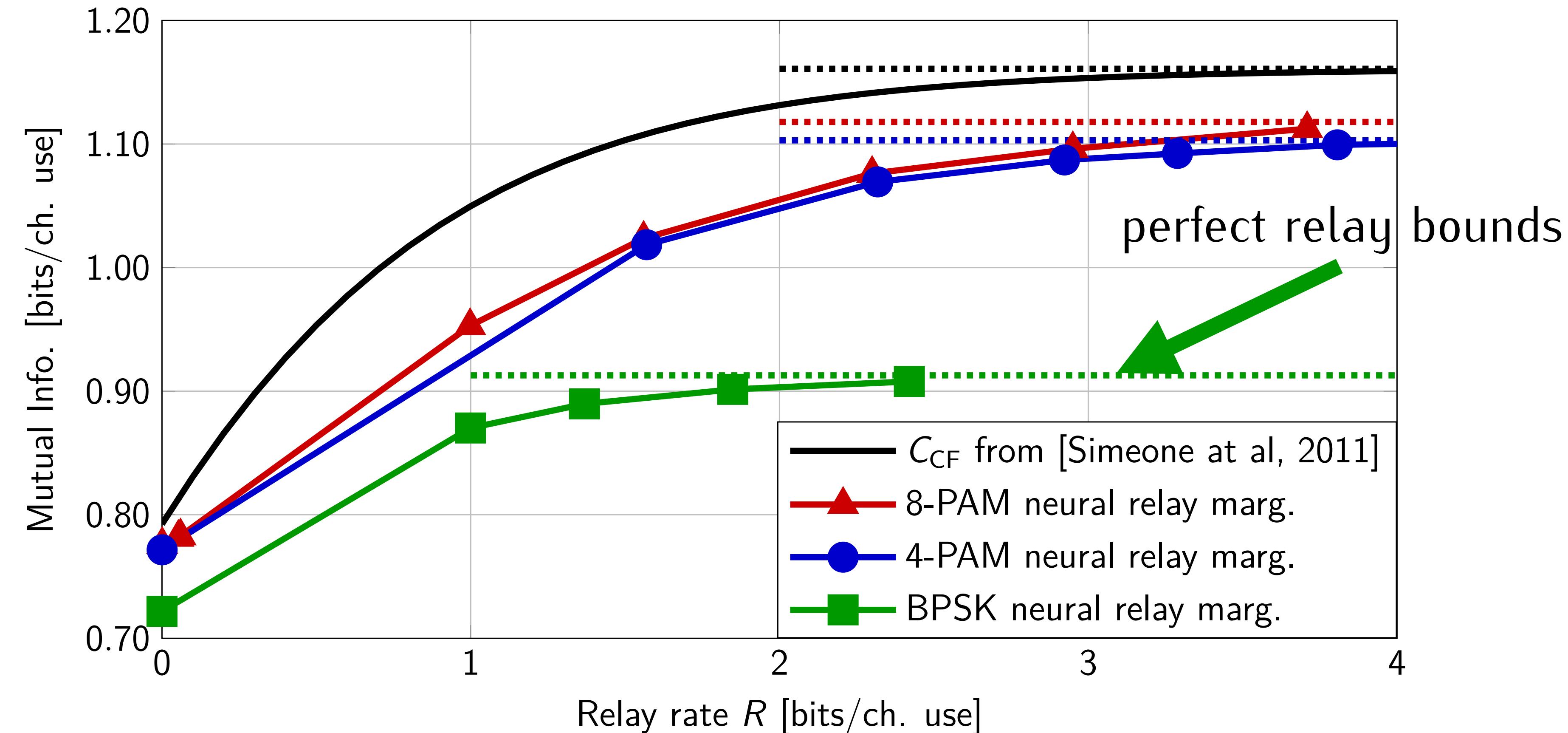
CF achievable rate [Simeone et al, 2011]: $C_{CF} = \frac{1}{2} \log_2 \left| 1 + \gamma_D + \frac{\gamma_R}{1 + \frac{1 + \gamma_D + \gamma_R}{(2^{2R} - 1)(\gamma_D + 1)}} \right|$

Mutual Information for Learned CF at $\gamma_D = \gamma_R = 3$ dB



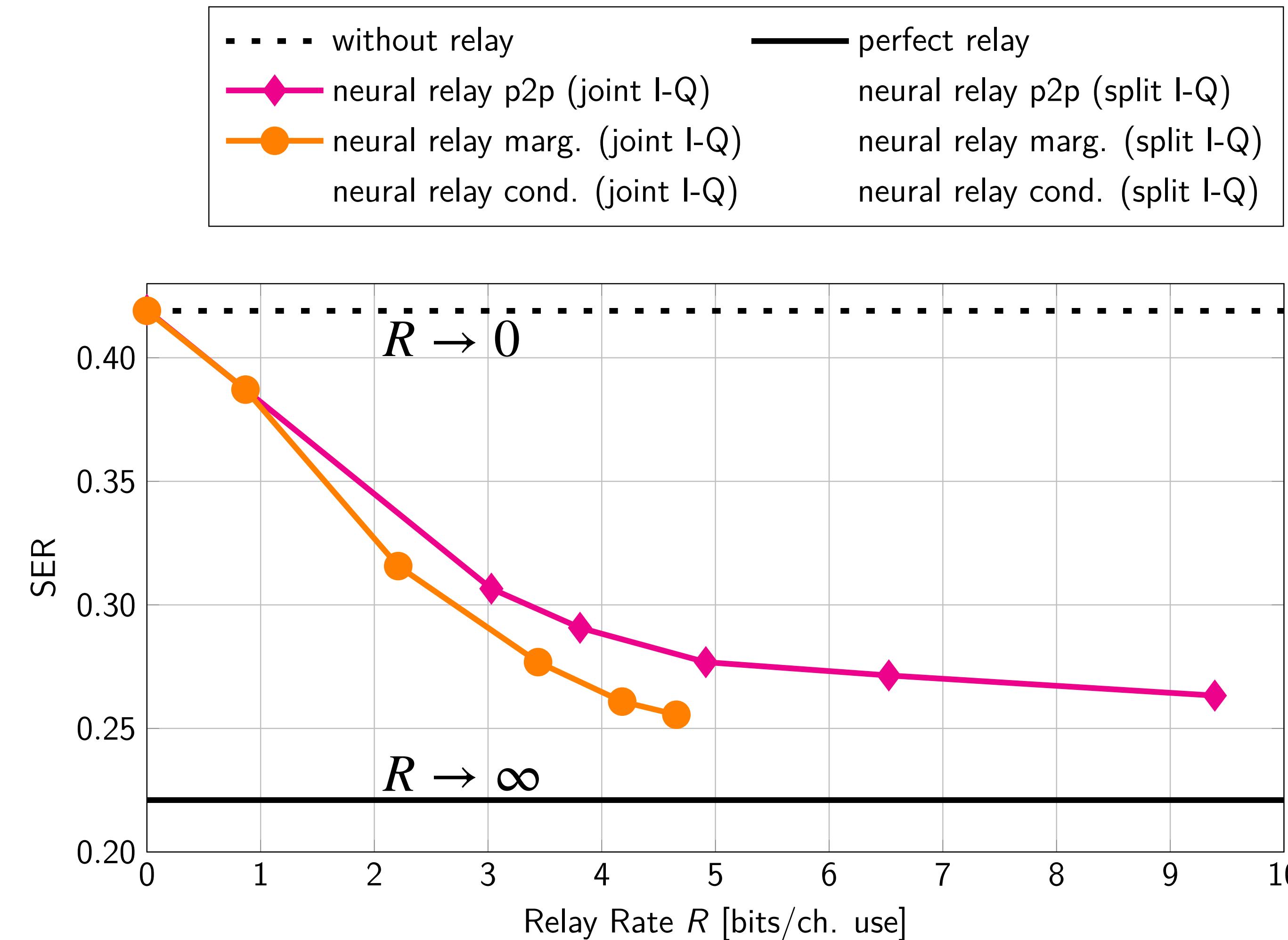
CF achievable rate [Simeone et al, 2011]:
$$C_{CF} = \frac{1}{2} \log_2 \left| 1 + \gamma_D + \frac{\gamma_R}{1 + \frac{1 + \gamma_D + \gamma_R}{(2^{2R} - 1)(\gamma_D + 1)}} \right|$$

Mutual Information for Learned CF at $\gamma_D = \gamma_R = 3$ dB

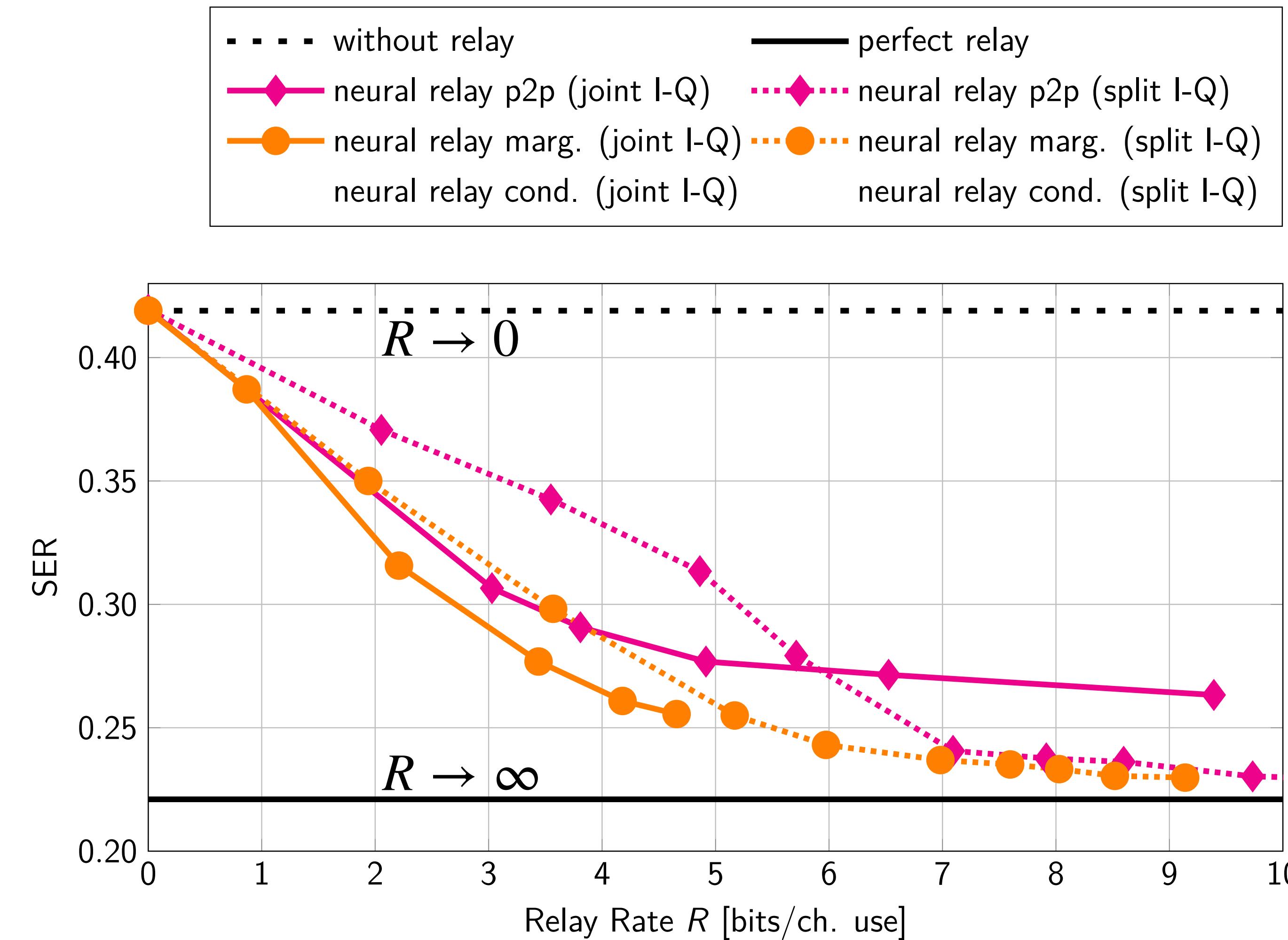


CF achievable rate [Simeone et al, 2011]: $C_{CF} = \frac{1}{2} \log_2 \left| 1 + \gamma_D + \frac{\gamma_R}{1 + \frac{1 + \gamma_D + \gamma_R}{1 + \frac{(2^{2R} - 1)(\gamma_D + 1)}{}}}} \right|$

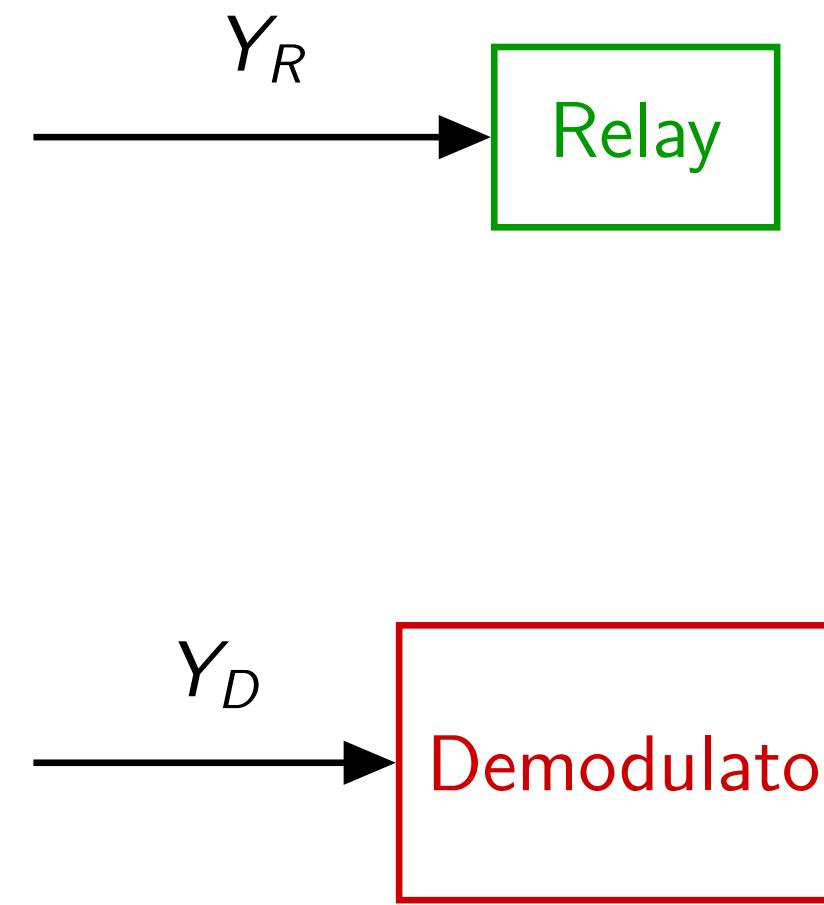
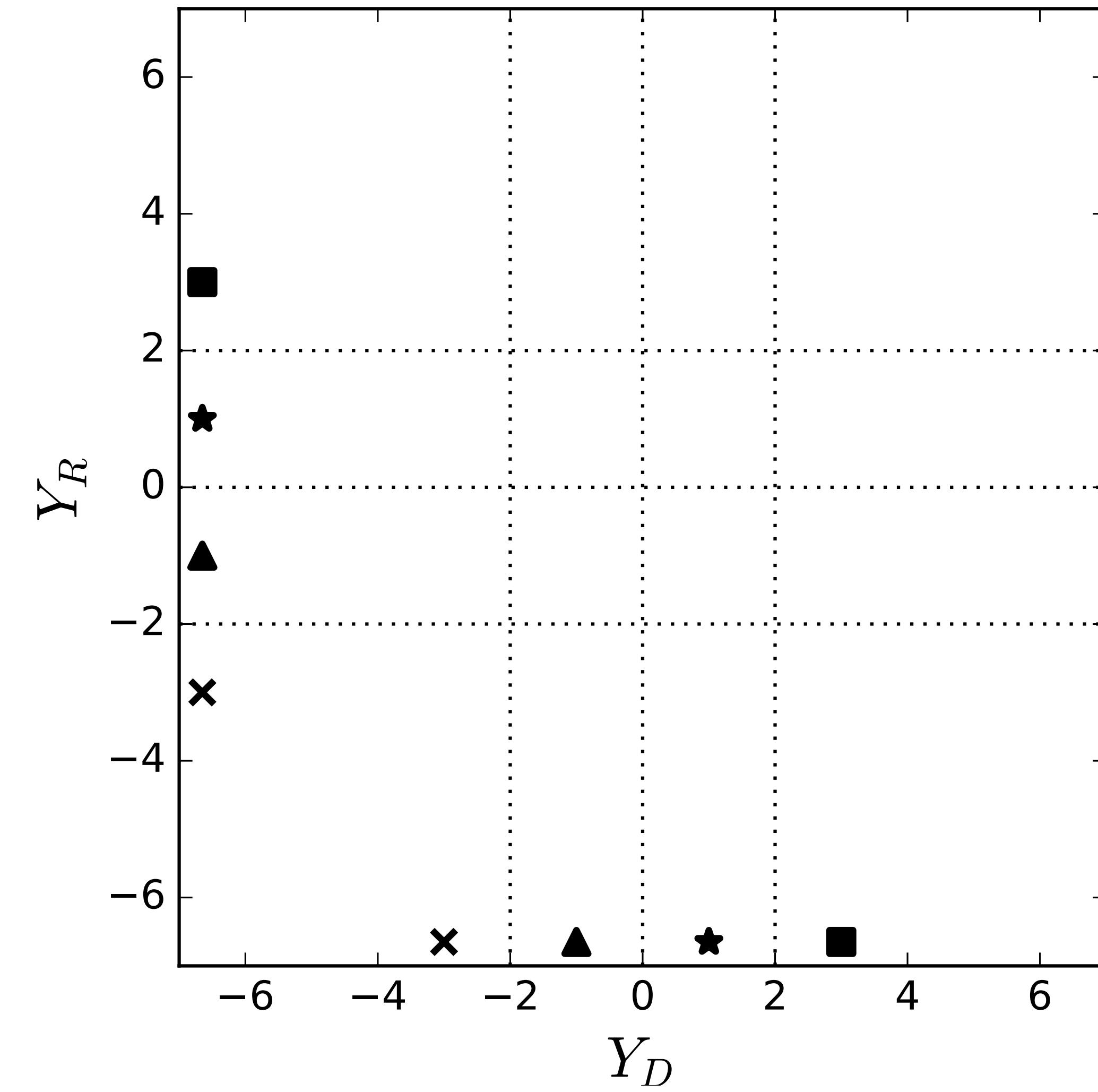
Symbol Error Rate for 16-QAM at $\gamma_D = \gamma_R = 7$ dB



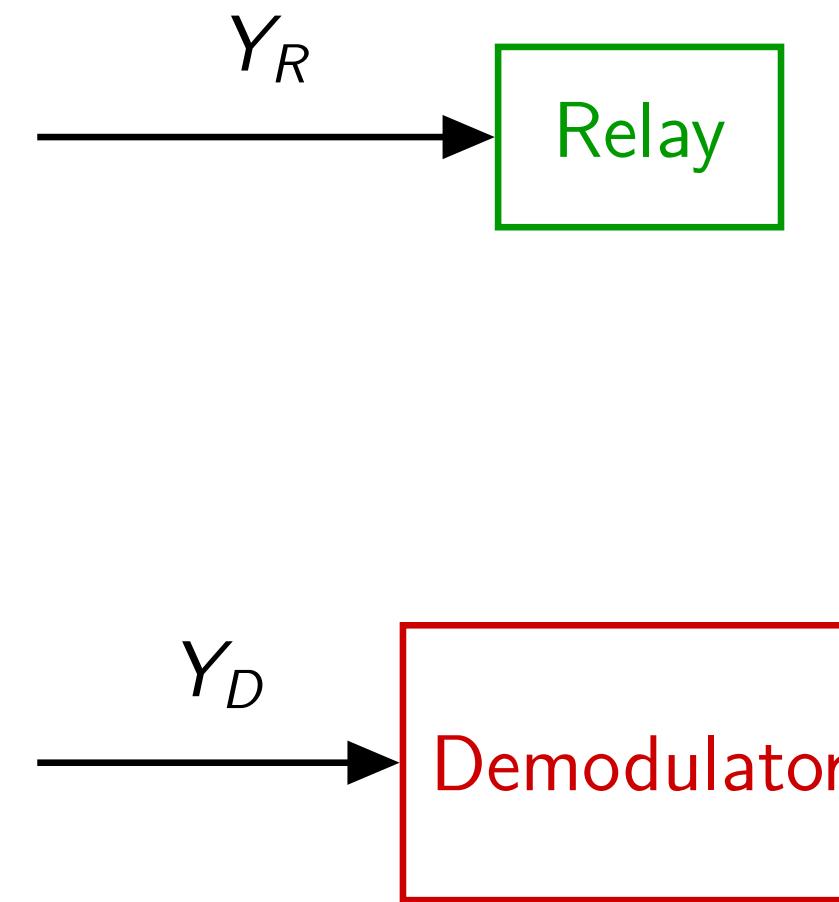
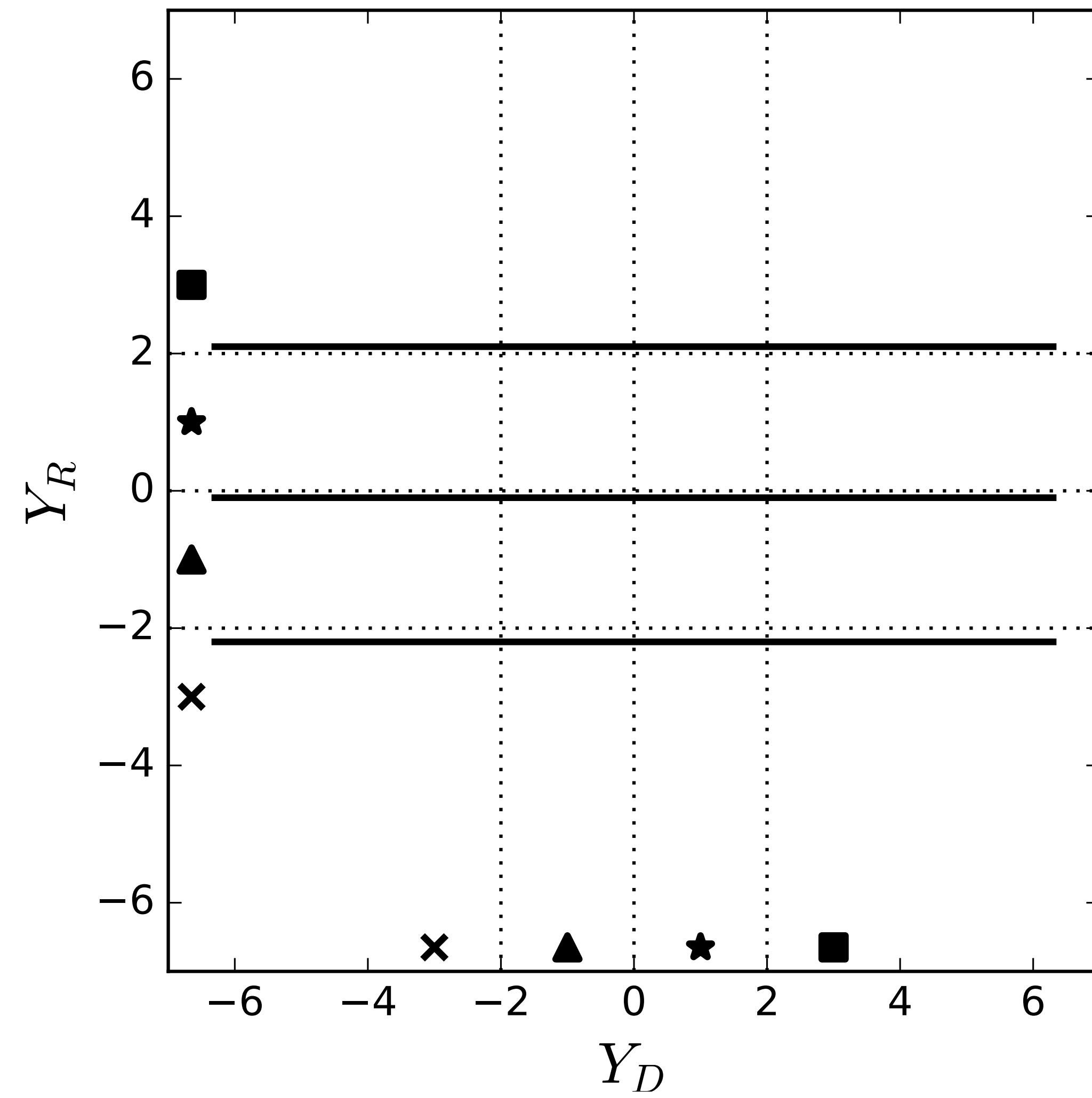
Symbol Error Rate for 16-QAM at $\gamma_D = \gamma_R = 7$ dB



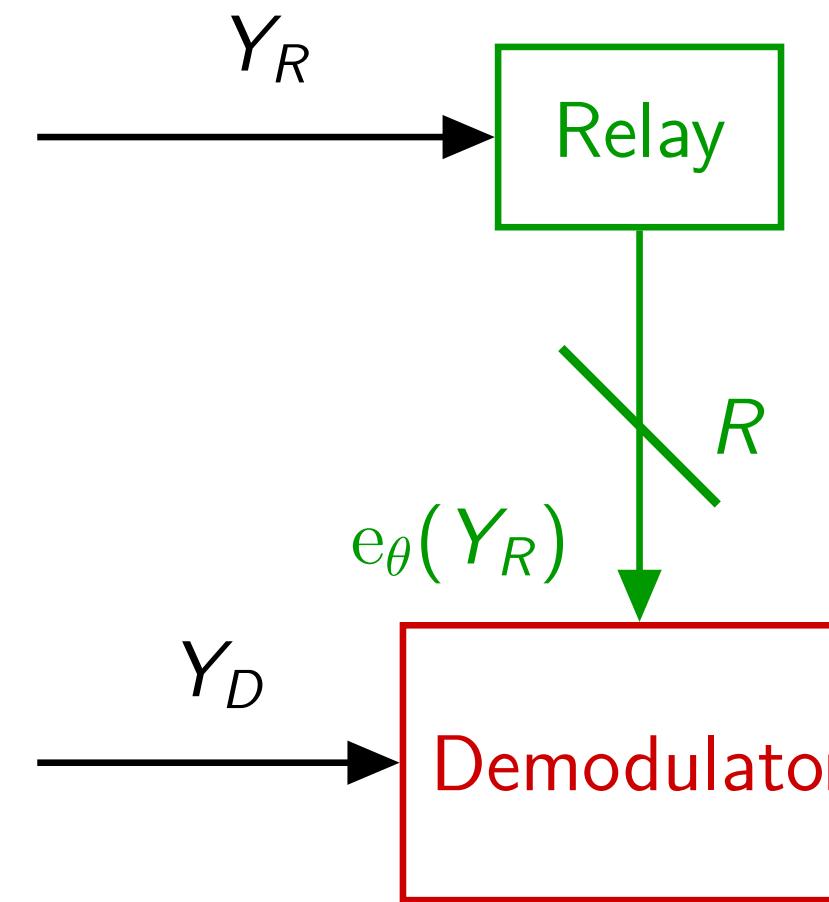
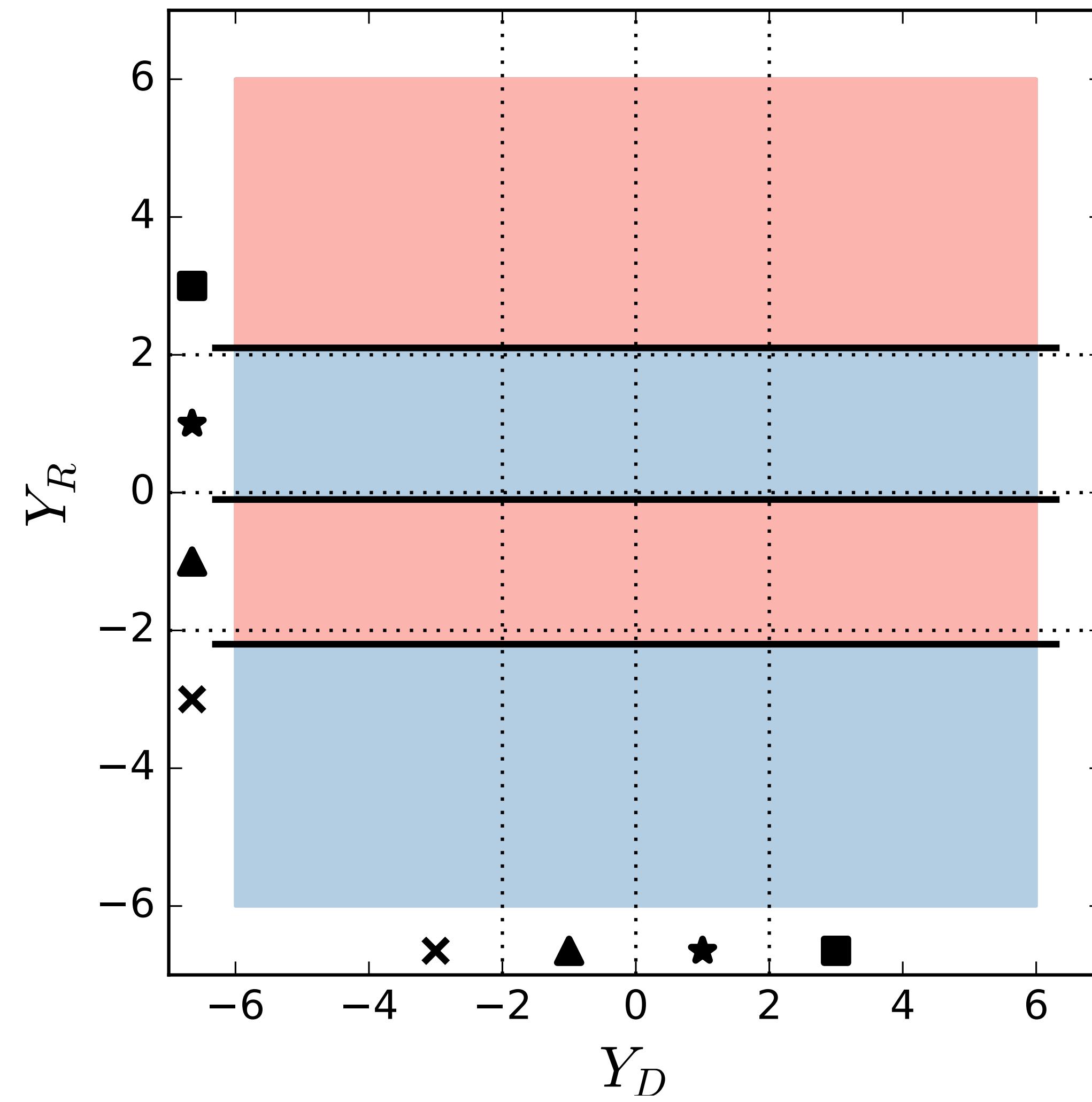
Quantization & Decisions for 4-PAM, $\gamma_D = \gamma_R = 10$ dB, $R \approx 1$



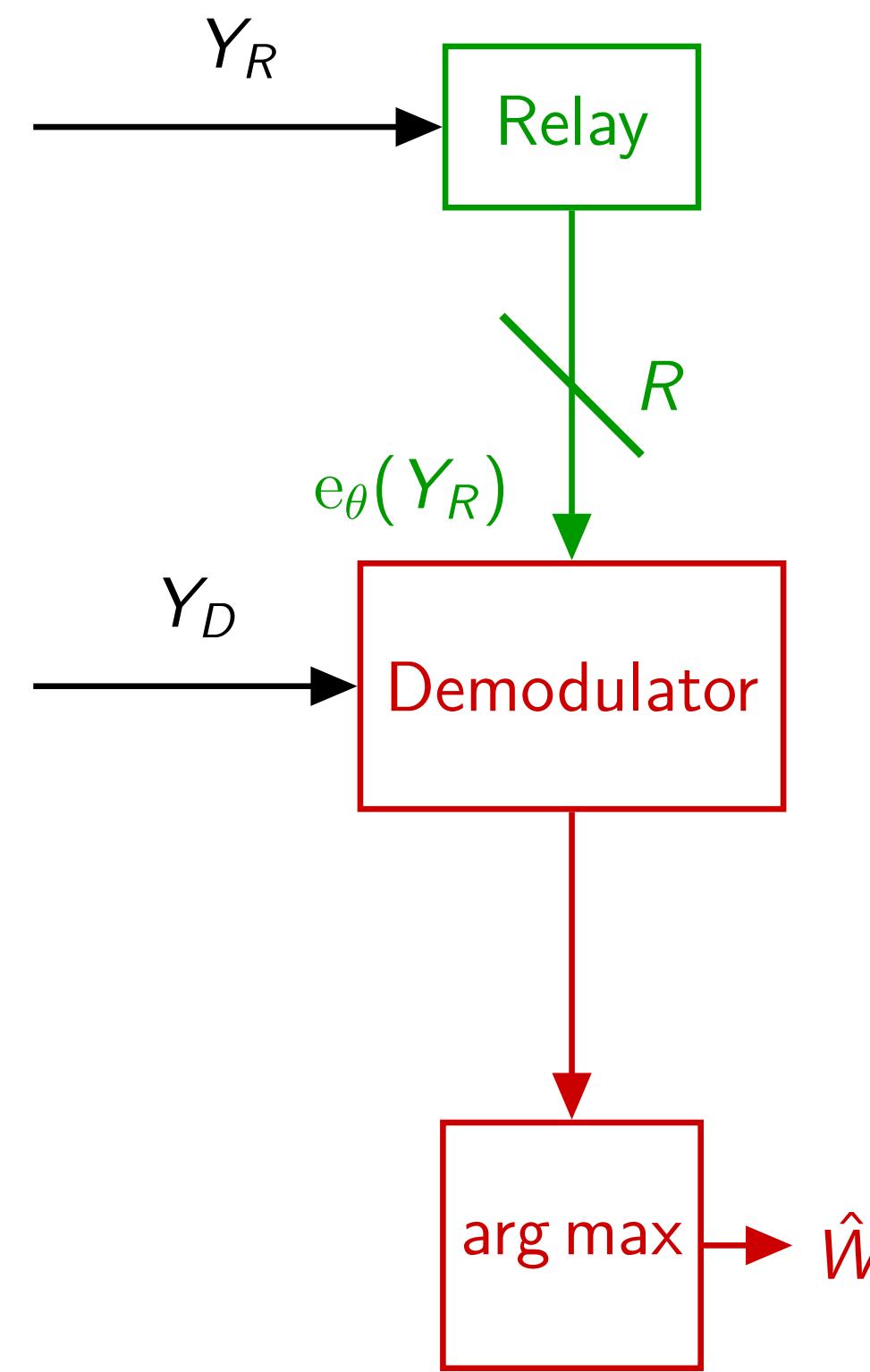
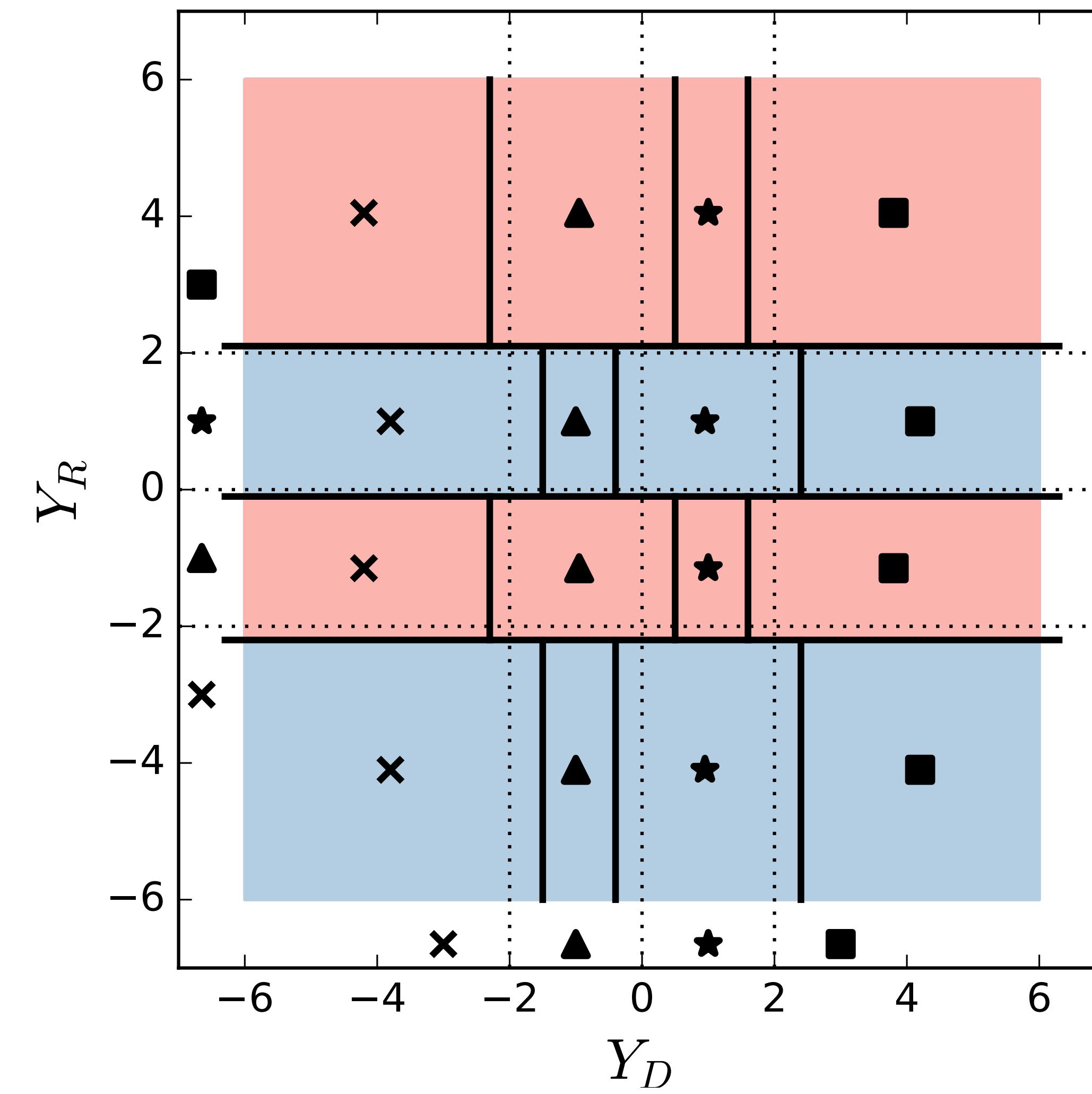
Quantization & Decisions for 4-PAM, $\gamma_D = \gamma_R = 10$ dB, $R \approx 1$



Quantization & Decisions for 4-PAM, $\gamma_D = \gamma_R = 10$ dB, $R \approx 1$

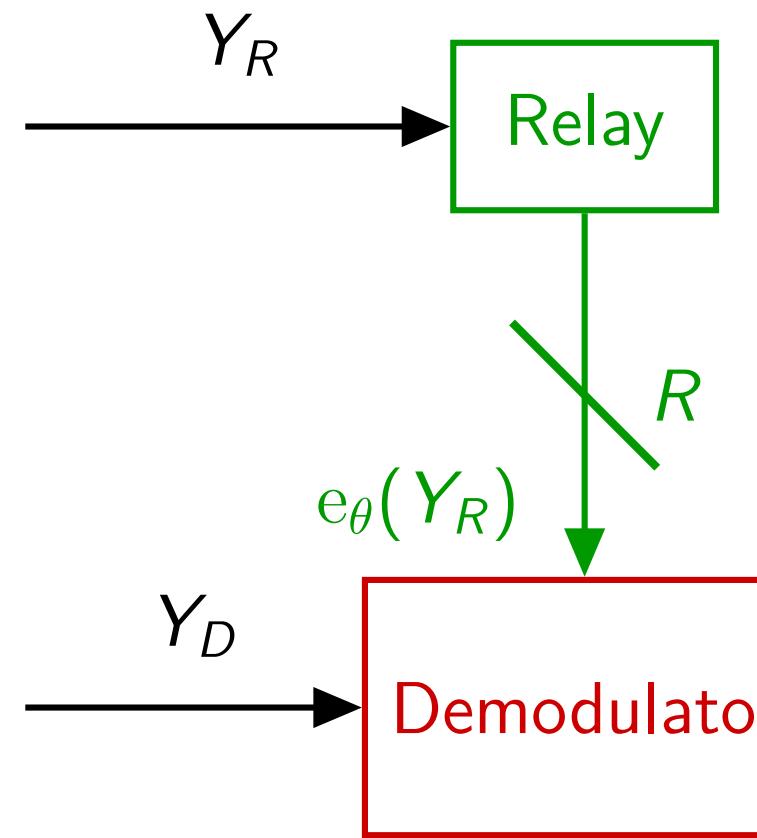
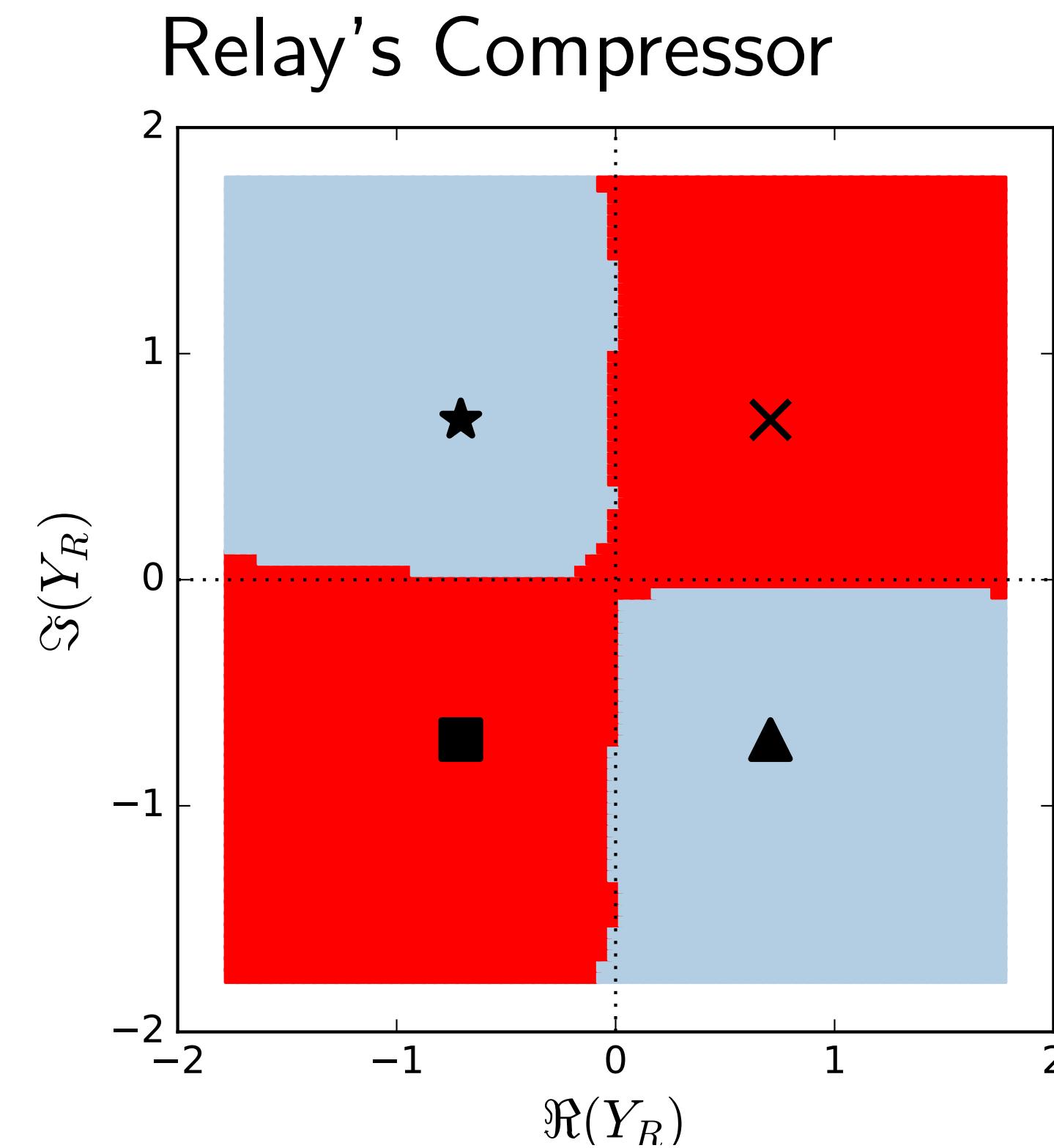


Quantization & Decisions for 4-PAM, $\gamma_D = \gamma_R = 10$ dB, $R \approx 1$

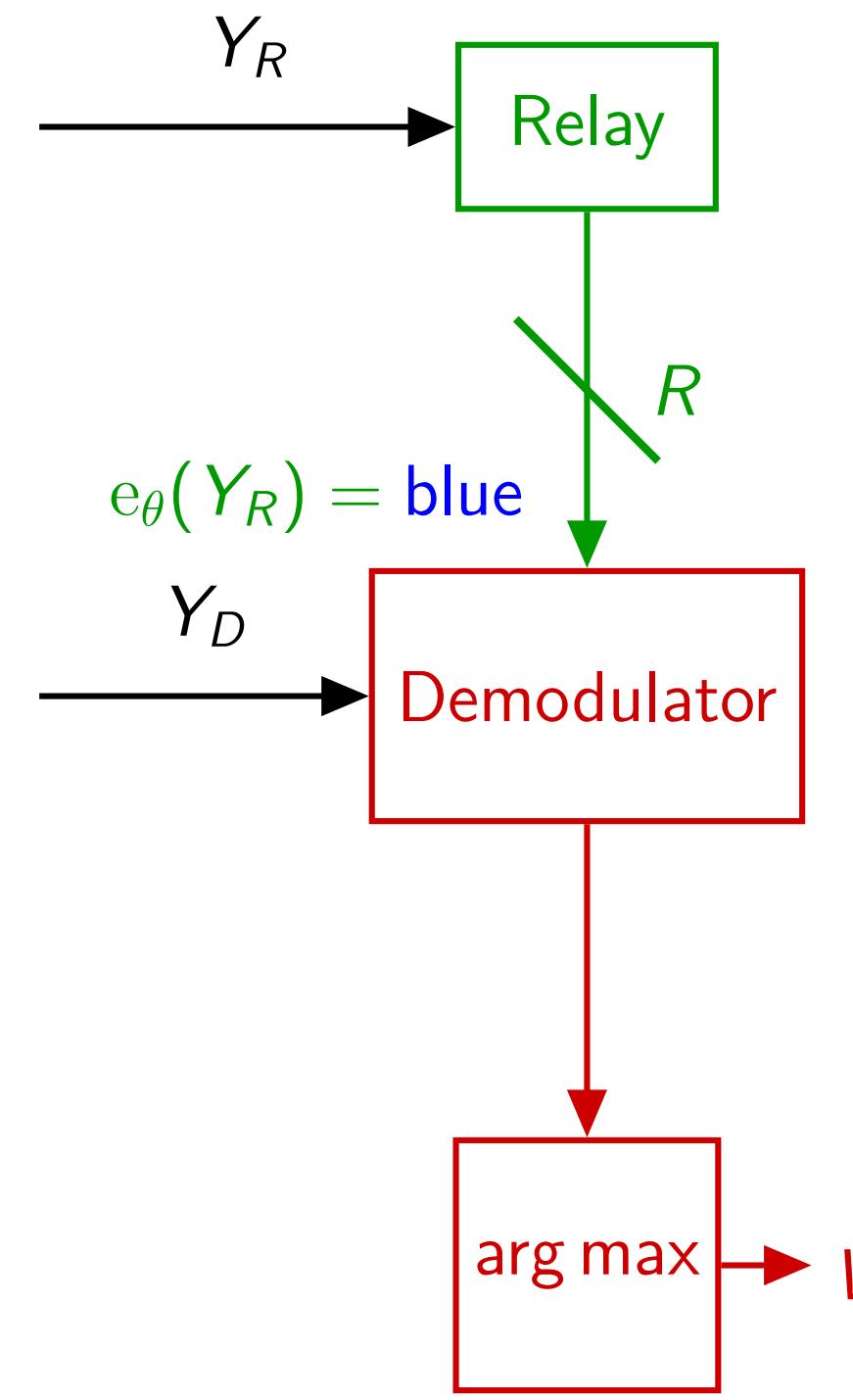
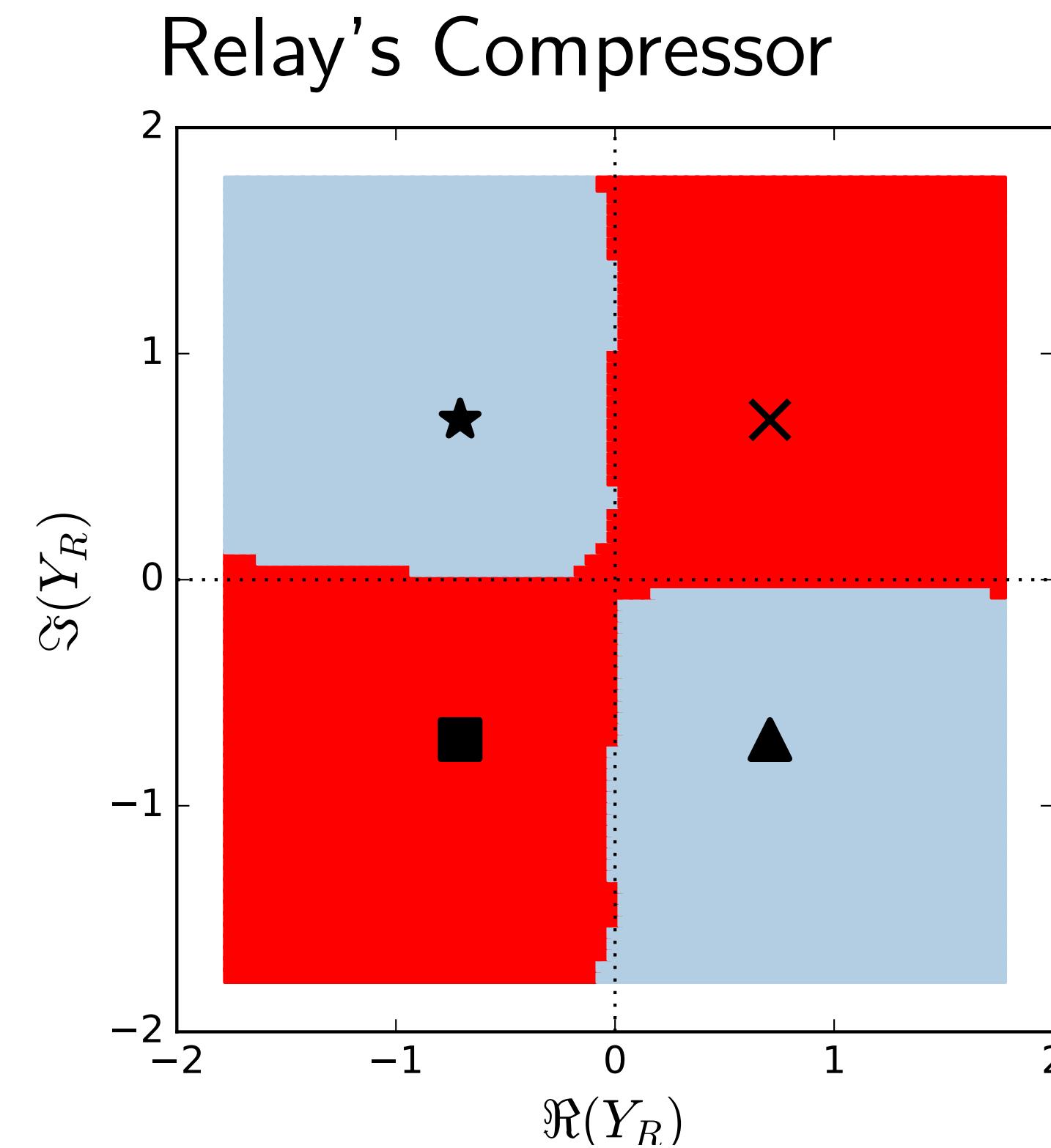


Quantization & Decisions for QAM, $\gamma_D = \gamma_R = 7$ dB, $R \approx 1$

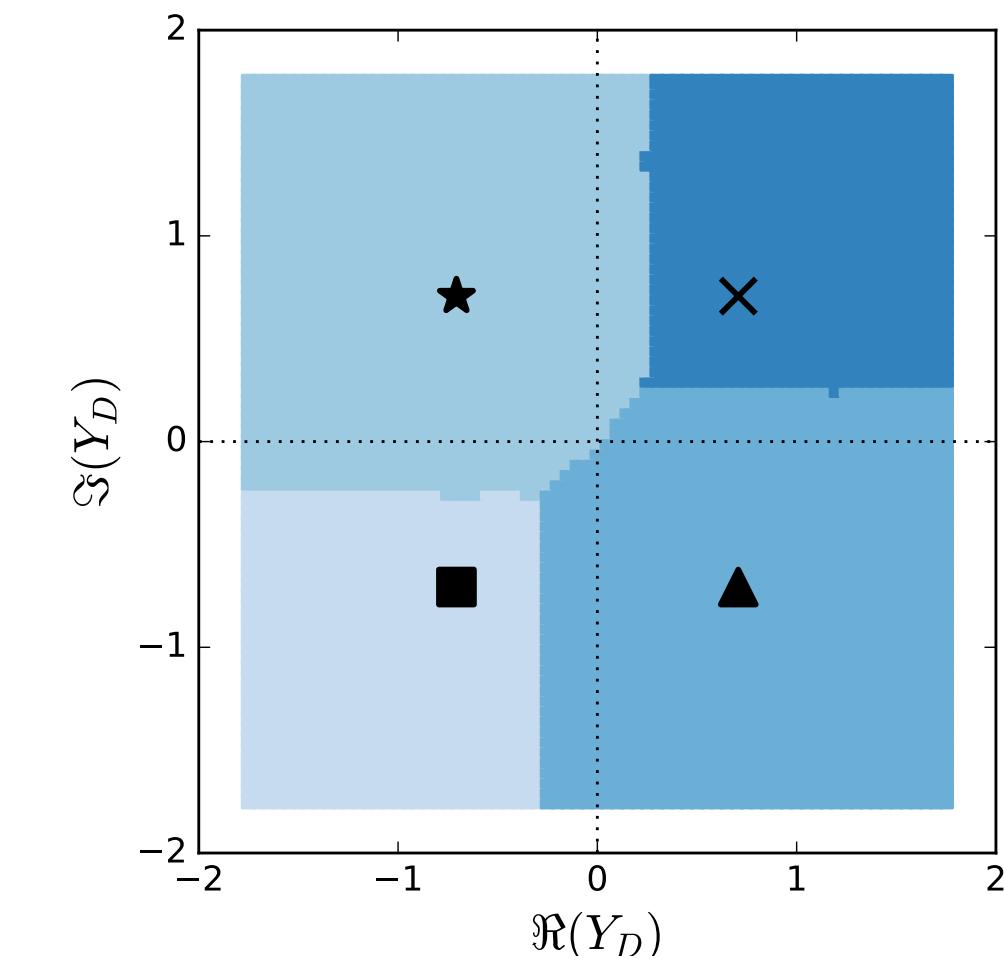
Destination's Demodulator



Quantization & Decisions for QAM, $\gamma_D = \gamma_R = 7$ dB, $R \approx 1$

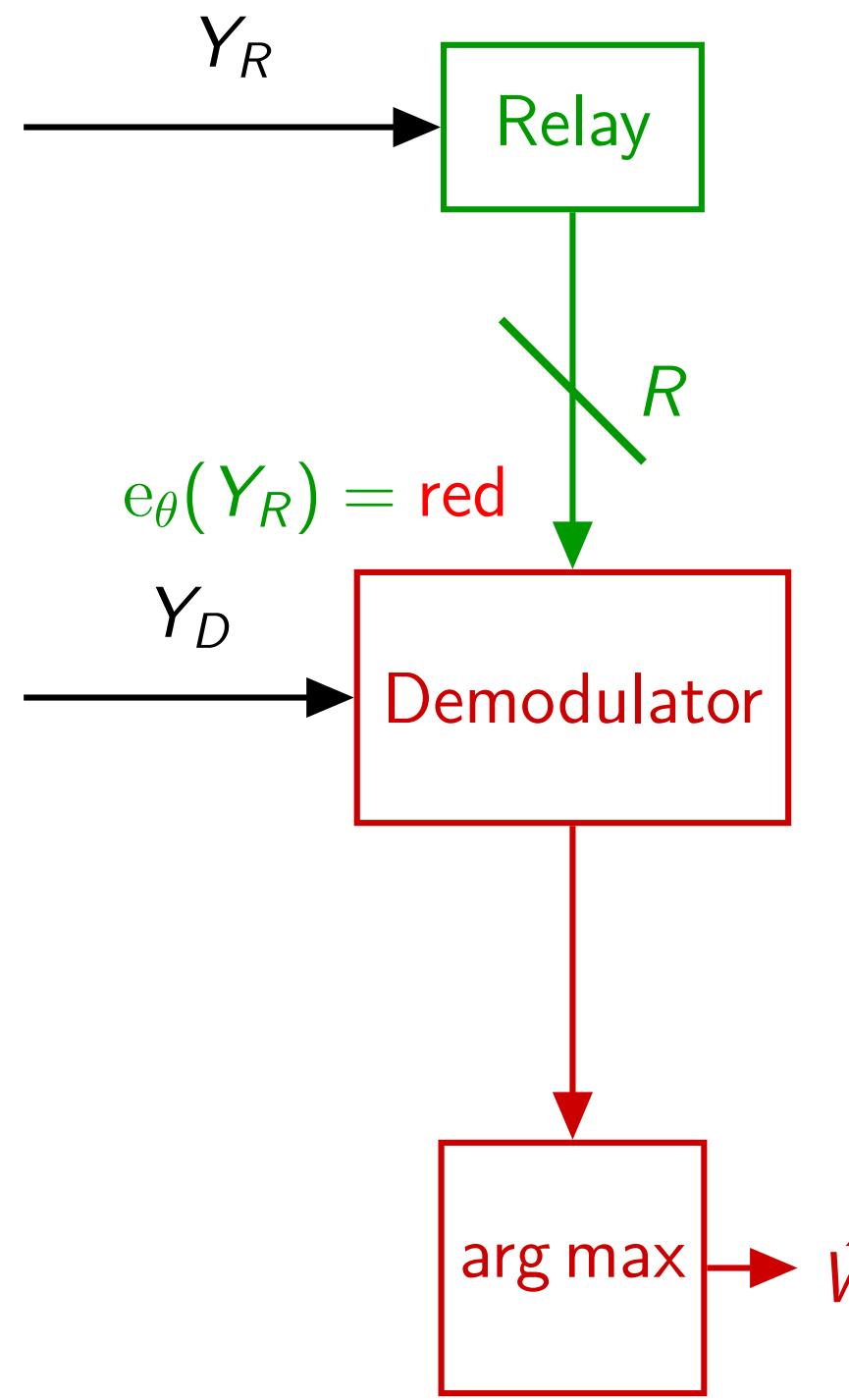
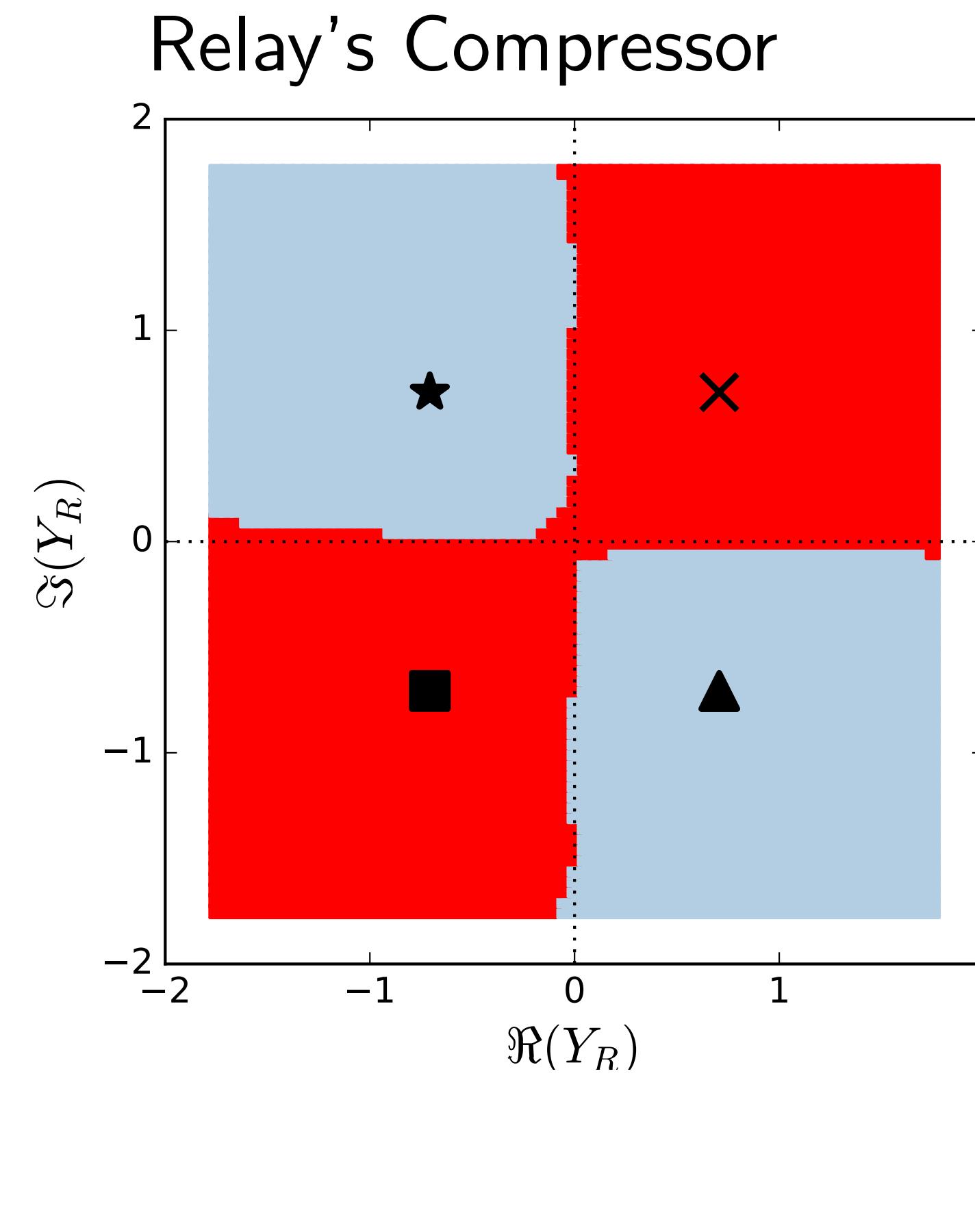
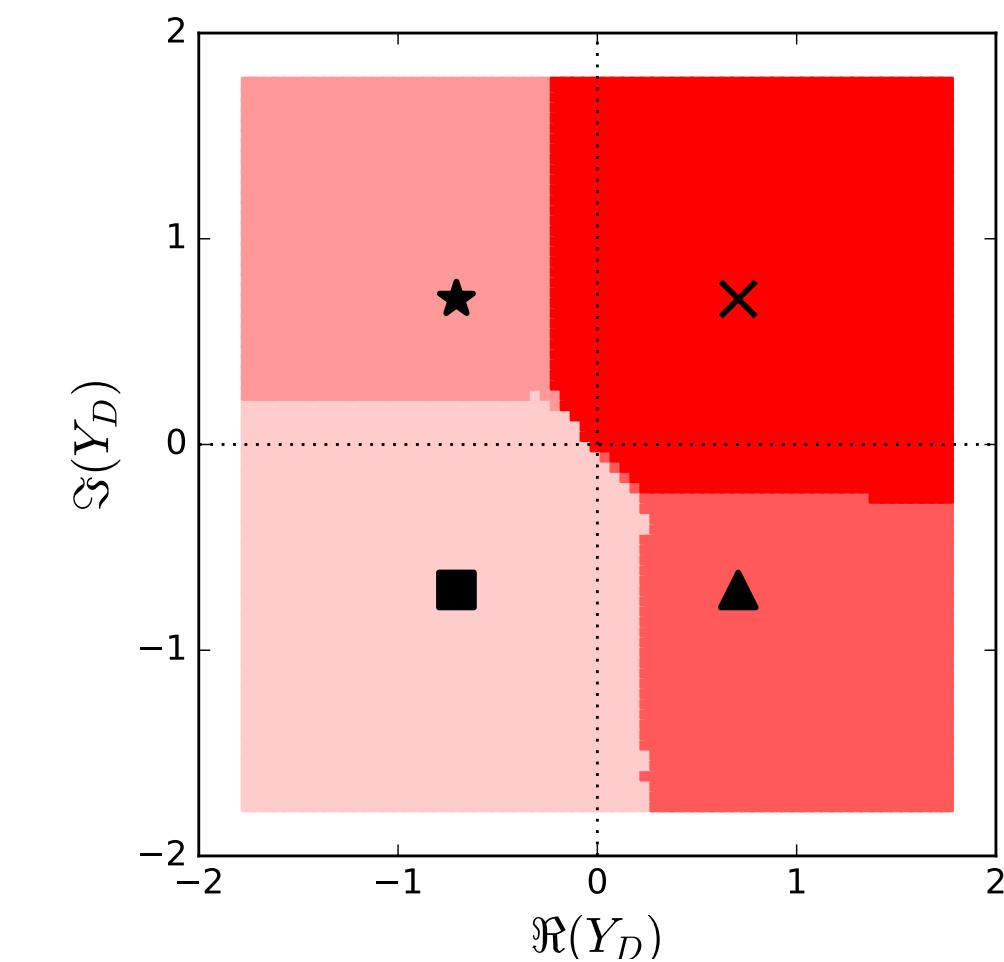


Destination's Demodulator

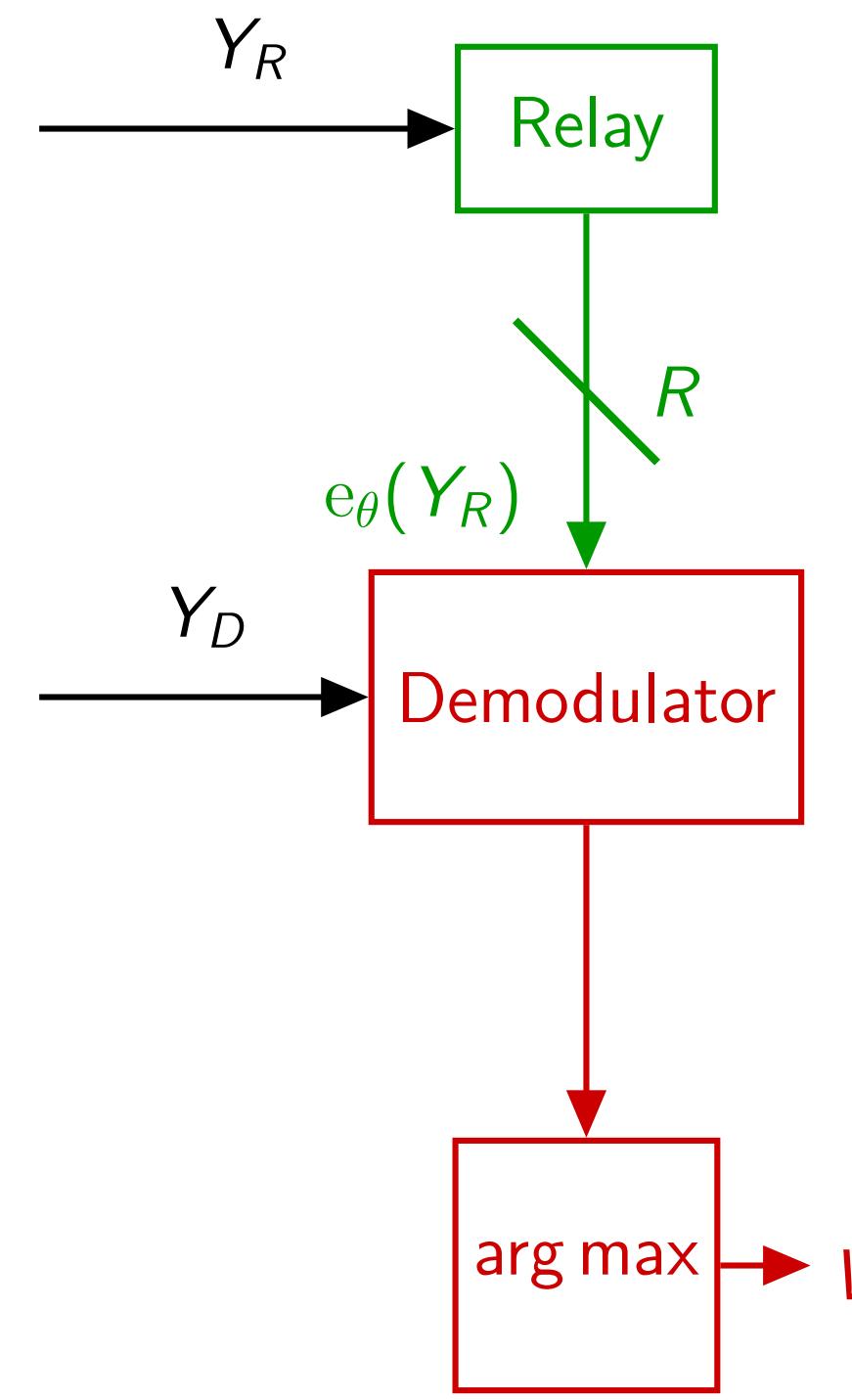
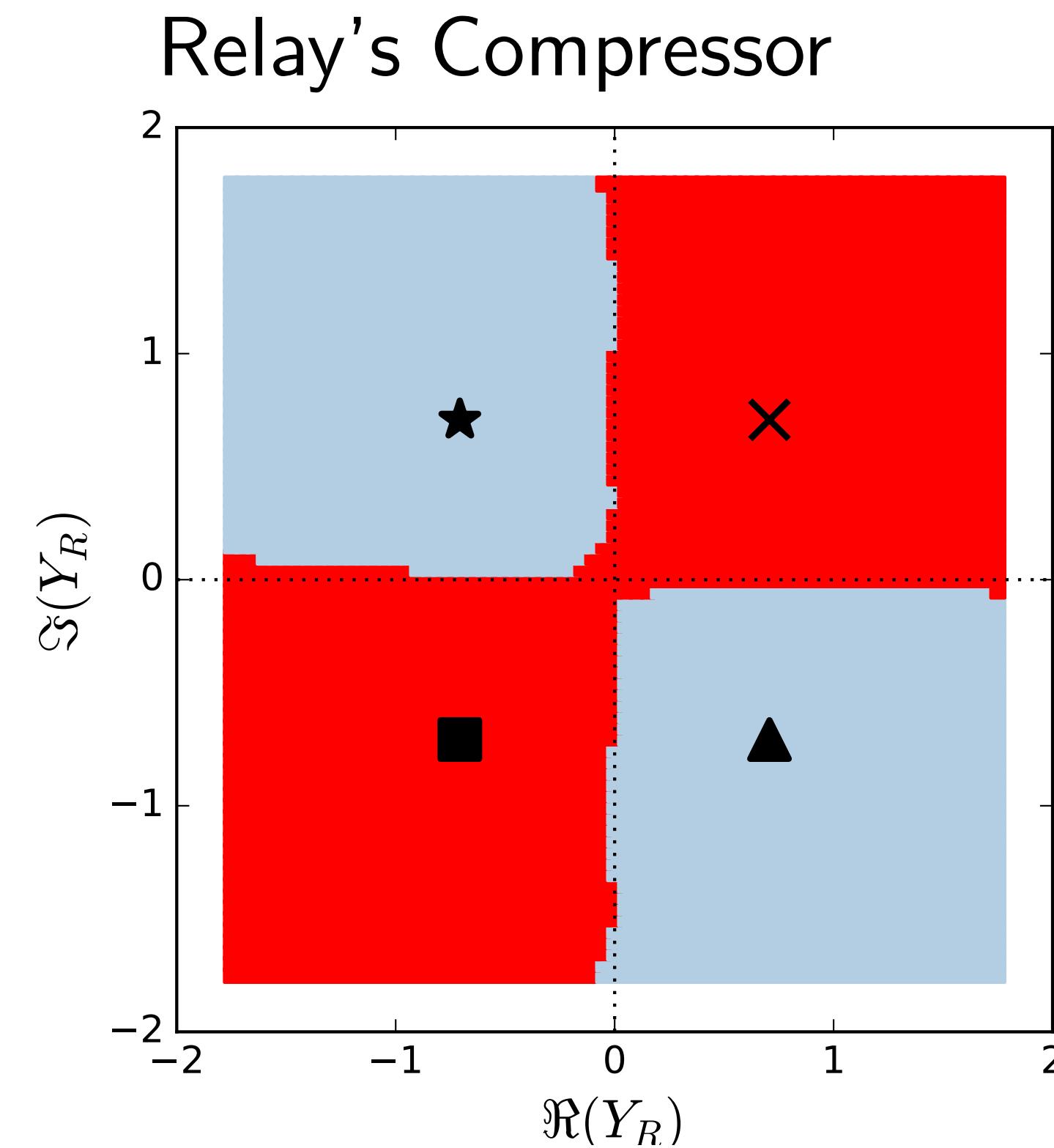


Quantization & Decisions for QAM, $\gamma_D = \gamma_R = 7$ dB, $R \approx 1$

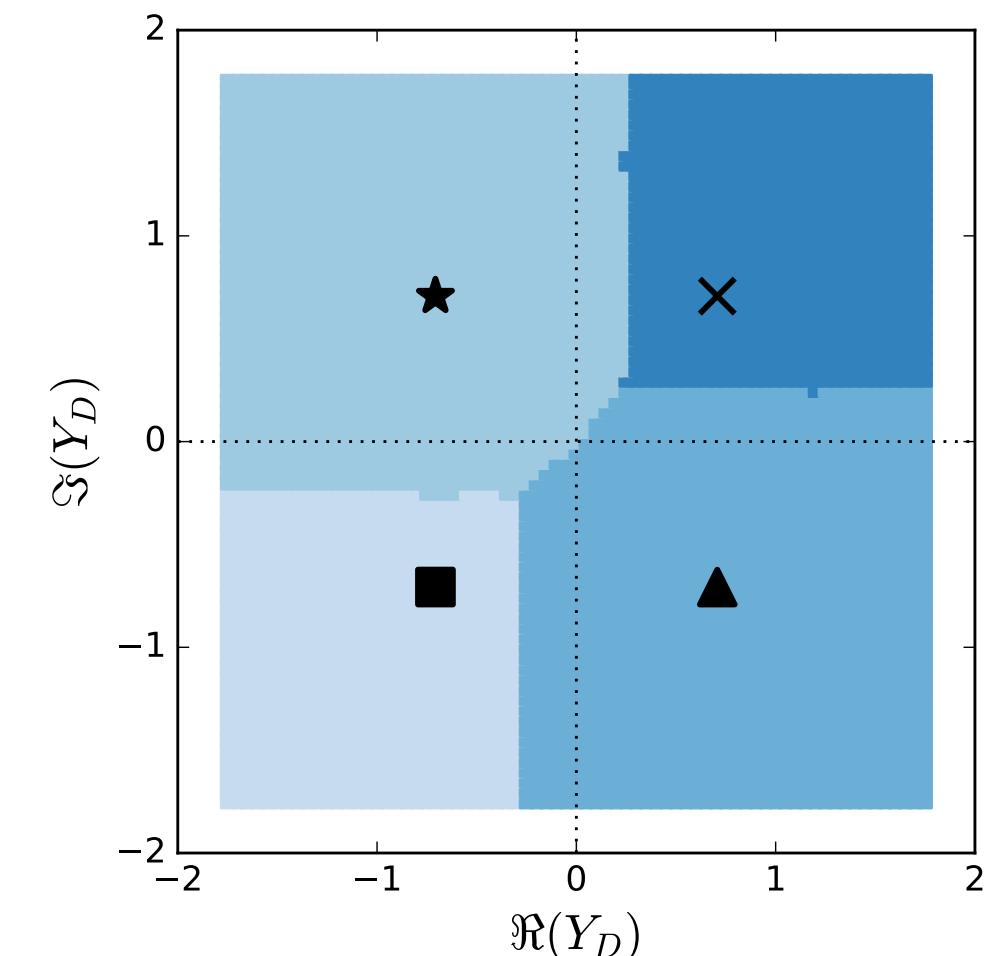
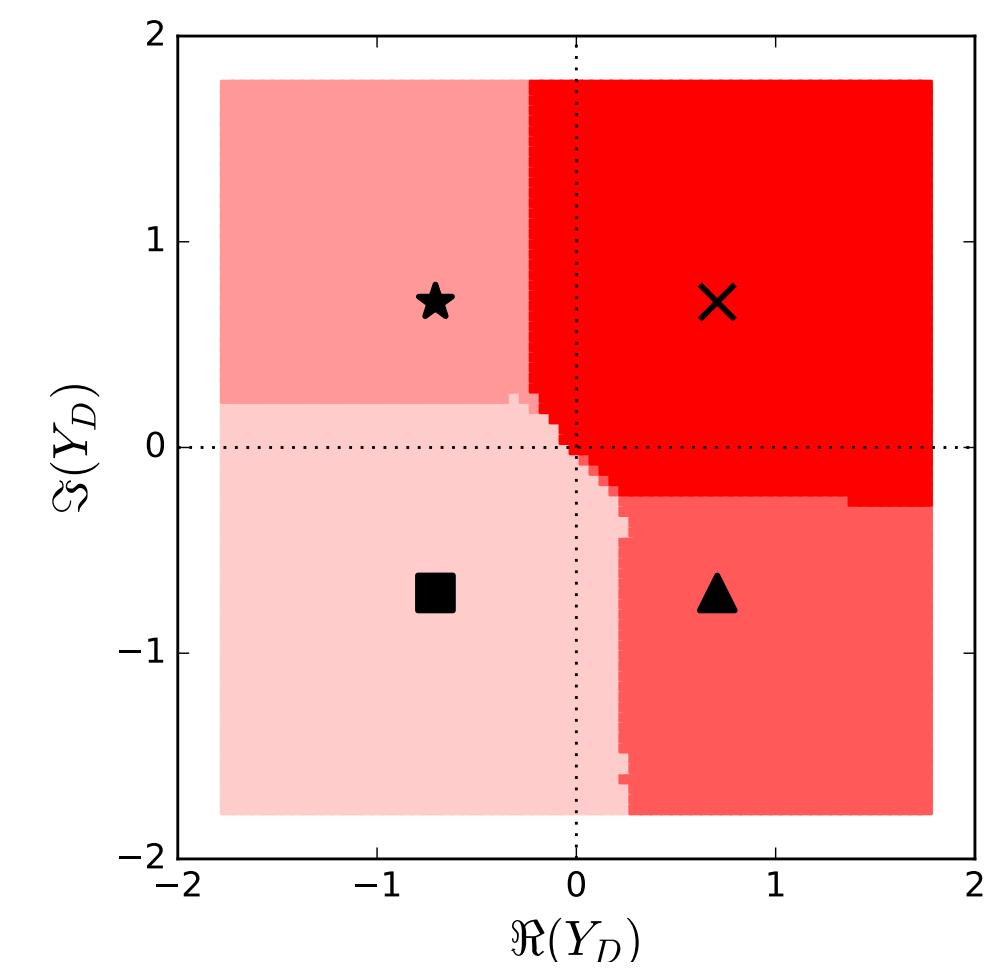
Destination's Demodulator



Quantization & Decisions for QAM, $\gamma_D = \gamma_R = 7$ dB, $R \approx 1$



Destination's Demodulator



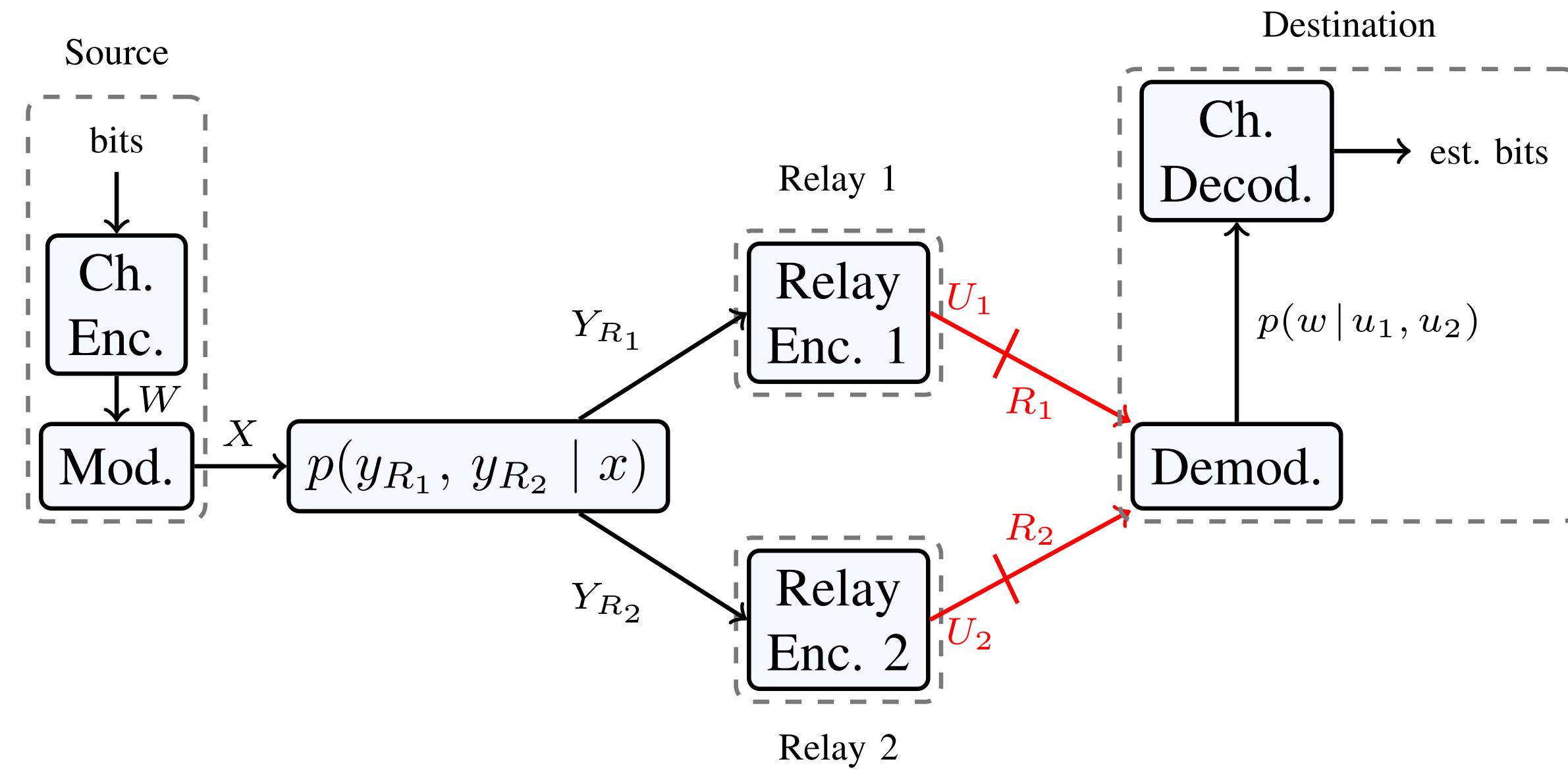
Summary on Neural Compress-and-Forward (CF)

- First proof-of-concept towards practical neural CF relaying scheme.
- Distributed compression helps in exploiting correlation at the destination.

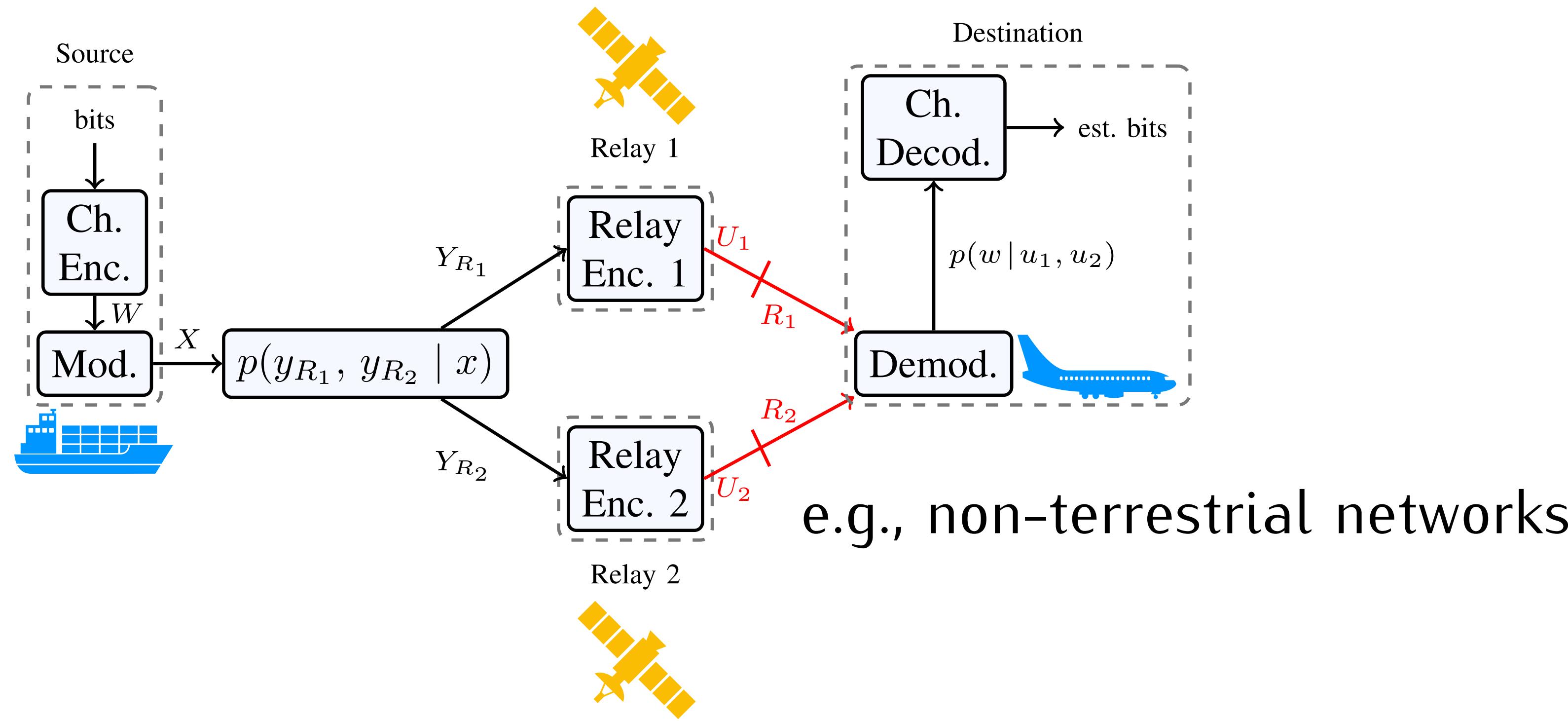
Summary on Neural Compress-and-Forward (CF)

- First proof-of-concept towards practical neural CF relaying scheme.
- Distributed compression helps in exploiting correlation at the destination.
- **Ongoing project:**
 - Extending neural CF to *diamond relay channel*
(i.e., w/ two relays connected to the destination via two separate links)

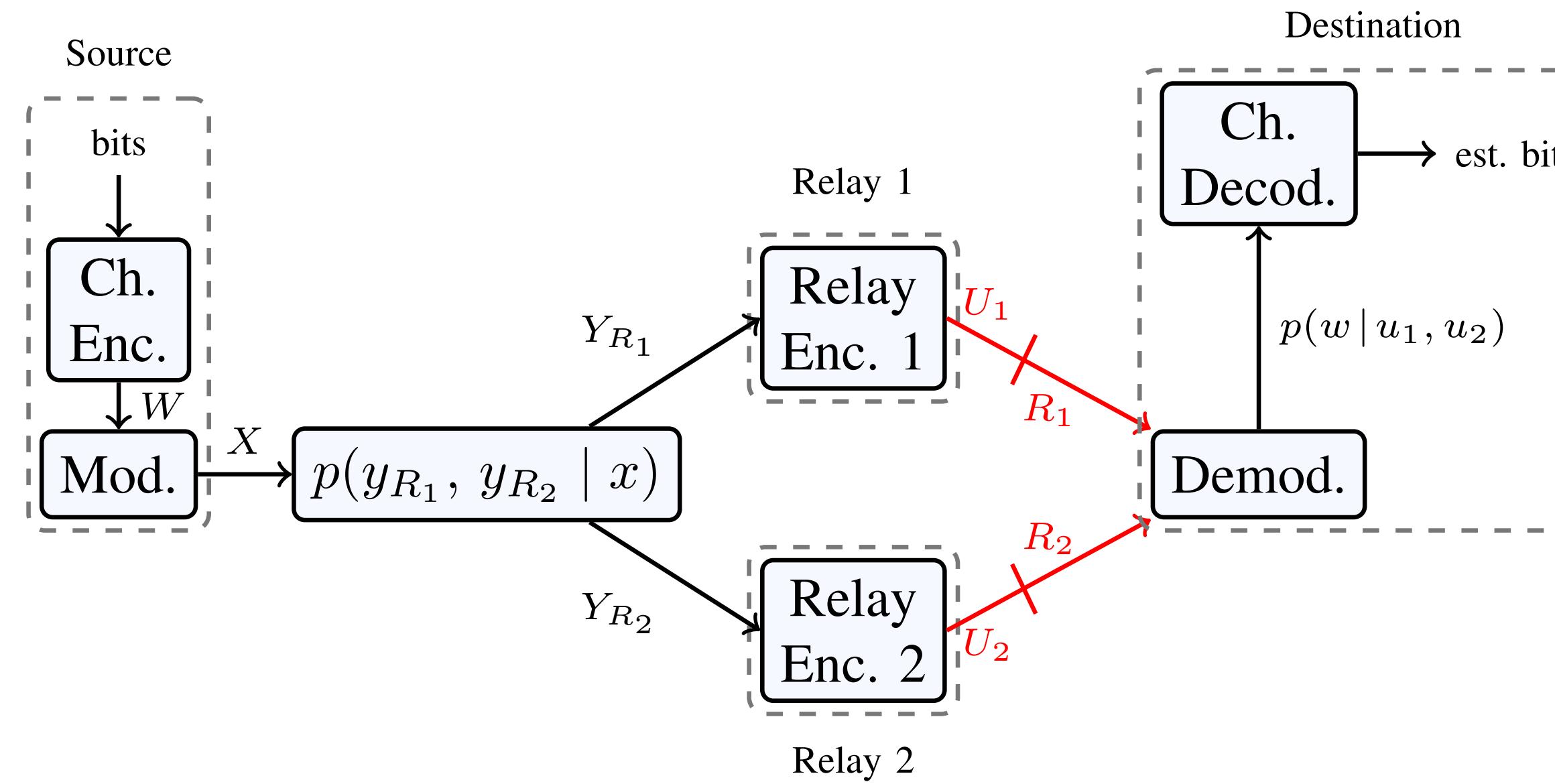
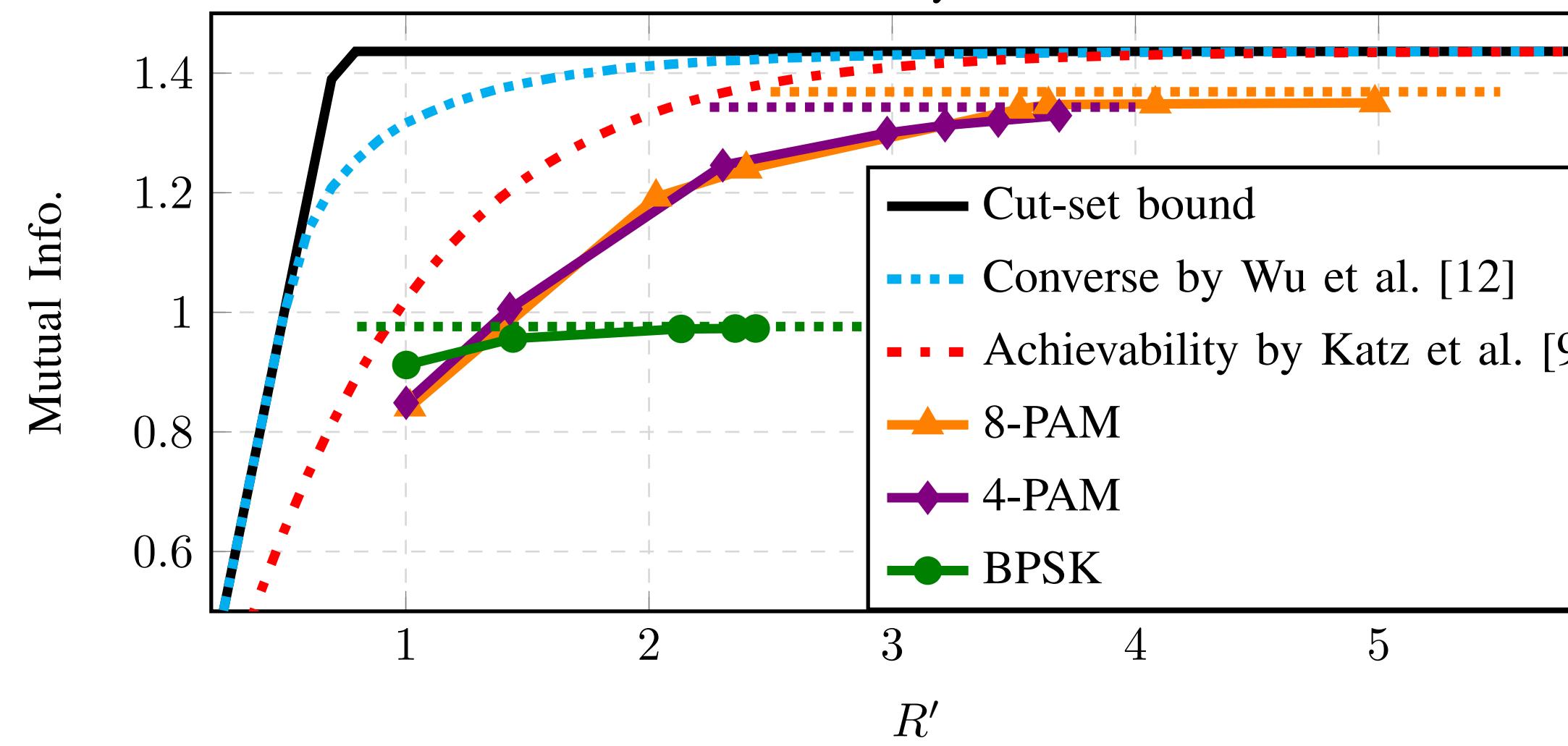
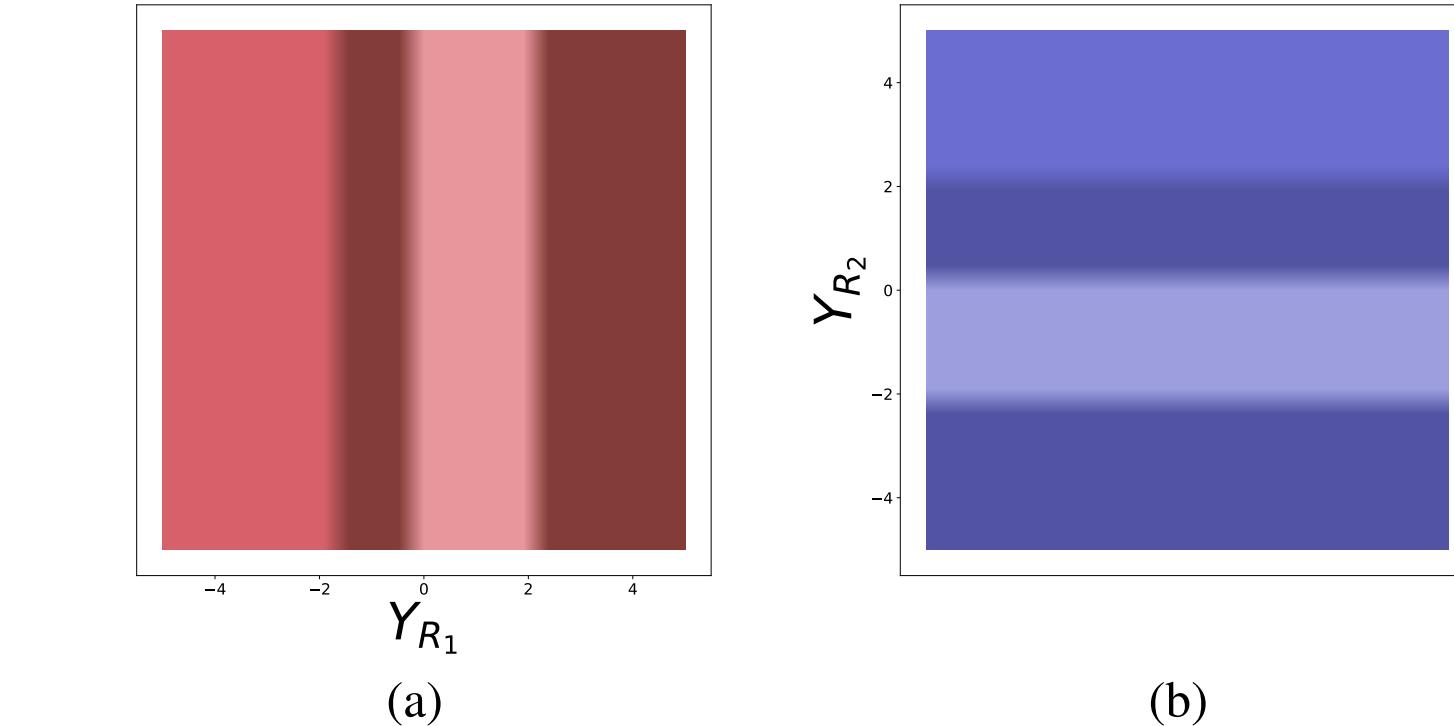
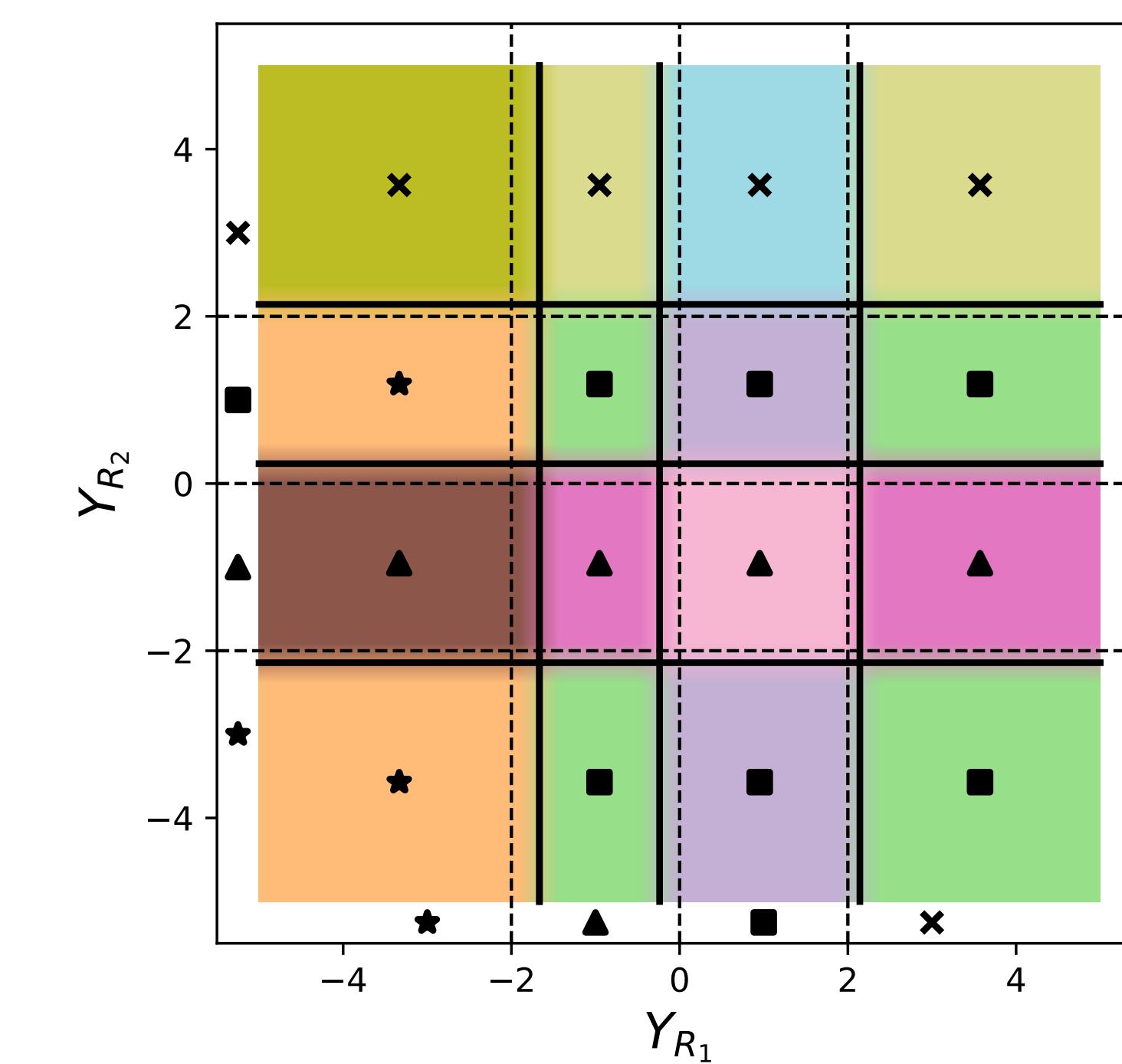
Neural CF for the Diamond Relay Channel



Neural CF for the Diamond Relay Channel



Neural CF for the Diamond Relay Channel



Summary on Neural Compress-and-Forward

- Learning-based distributed compressors are useful for task-aware/semantic communication problems while being interpretable!

Summary on Neural Compress-and-Forward

- Learning-based distributed compressors are useful for task-aware/semantic communication problems while being interpretable!
- Operating close to the capacity in primitive relay channel:
 - Ozyilkan*, Carpi*, Garg & Erkip (IEEE SPAWC, 2024)
 - Ozyilkan*, Carpi*, Garg & Erkip (IEEE J. Sel. Areas in Communications, 2025)
 - ✓ Patent application in preparation.

Summary on Neural Compress-and-Forward

- Learning-based distributed compressors are useful for task-aware/semantic communication problems while being interpretable!
- Operating close to the capacity in primitive relay channel:
 - Ozyilkan*, Carpi*, Garg & Erkip (IEEE SPAWC, 2024)
 - Ozyilkan*, Carpi*, Garg & Erkip (IEEE J. Sel. Areas in Communications, 2025)
 - ✓ Patent application in preparation.
- Observations generalize to multi-relay setups as well:
 - Aygun, Ozyilkan & Erkip (IEEE Asilomar, 2025)

Summary on Neural Compress-and-Forward

- Learning-based distributed compressors are useful for task-aware/semantic communication problems while being interpretable!
 - Operating close to the capacity in primitive relay channel:
 - Ozyilkan*, Carpi*, Garg & Erkip (IEEE SPAWC, 2024)
 - Ozyilkan*, Carpi*, Garg & Erkip (IEEE J. Sel. Areas in Communications, 2025)
 - ✓ Patent application in preparation.
 - Observations generalize to multi-relay setups as well:
 - Aygun, Ozyilkan & Erkip (IEEE Asilomar, 2025)
 - Revised objective: Distortion \leftrightarrow Classification.
 - MPEG activity, “Video Coding for Machines”
 - Ozyilkan*, Ulhaq*, Choi & Racapé (IEEE DCC, 2023)

If you found this talk interesting ...

Publications: <https://ezgi.space>

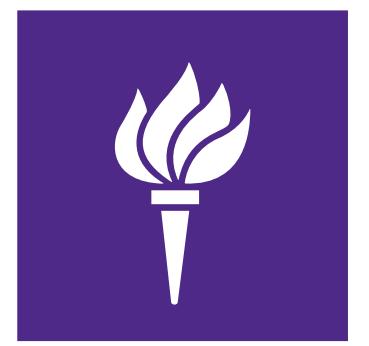
Reach out to me at ezgi.ozyilkan@nyu.edu!

If you found this talk interesting ...

Publications: <https://ezgi.space>

Reach out to me at [ezgi.ozyilkan@nyu.edu!](mailto:ezgi.ozyilkan@nyu.edu)

Moving forward, will be working on:
perceptual optimization
+ **compression** + **3D vision**



NYU

Apple, ML + Video Research

Thank you! Q&A?

Neural Distributed Data Compression and Communication

Ezgi Ozyilkan

<https://ezgi.space>

ezgi.ozyilkan@nyu.edu