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Overview Framework Results

To evaluate how close we get to the R-D bound,
choose X and Y as i.i.d. Gaussian memoryless

sources and d( - ) as mean-squared error.

Summary: Demonstrate that neural distributed Main idea: Leverage universal function approximation capability
compressor mimics the Wyner-Ziv theorem and does || of neural networks to find constructive solutions for
binning, although no particular structure was one-shot Wyner-Ziv compression.
imposed onto the model. | A e AN,
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For X", the optimal compressor

sends the color within the “fan” = Binning.

Rate-Distortion (R-D) with Side Information
(Wyner & Ziv, 1976)

Let (X,Y) be correlated and drawn i.i.d. ~ p(x,y). The
R-D function for X when Y available at the decoder is:

Ry,,(D) = min((X; U) — I(Y; U)),

where the minimization is over all p(u|x) and all

g(u,y) satisfying the average distortion criterion.

Assume that the encoder is represented by a probability model py(u|x),

p(uly)
Set encoder output as u = argmaxvpa(le) . Have U as discrete.

Choose one of two variational upper bounds:
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Clg(ub’)
Relax the constrained formulation of Wyner-Ziv theorem using

Lagrange multipliers:
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Define all probabilistic models as discrete distributions.
Use Gumbel-max (Gumbel, 1954) to draw samples, and Concrete

distributions (Maddison et al., 2016) to facilitate optimization.
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X =Y+ N with Y ~ N(0,1) and N ~ N(0,1071) .
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—a— neural distributed source coding (Whang et al., 2021)
—a&— neural upper bound estimated with Ly,
—e@— neural upper bound estimated with L
-------- asymptotic R-D point-to-point
—15 } - - - - asymptotic R-D Wyner—Ziv + 1.53 dB
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Y =X+ N with X ~ N(0,1) and N ~ N(0,1072) .
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